1
0
rocket-chip/uncore/src/uncore.scala

871 lines
38 KiB
Scala
Raw Normal View History

package uncore
import Chisel._
import Constants._
2012-12-13 20:39:14 +01:00
class TrackerProbeData(implicit conf: CoherenceHubConfiguration) extends Bundle {
2013-01-16 00:52:47 +01:00
val client_id = Bits(width = conf.ln.idBits)
}
2012-12-13 20:39:14 +01:00
class TrackerAllocReq(implicit conf: CoherenceHubConfiguration) extends Bundle {
2013-01-22 02:17:26 +01:00
val acquire = new Acquire()
2013-01-16 00:52:47 +01:00
val client_id = Bits(width = conf.ln.idBits)
override def clone = { new TrackerAllocReq().asInstanceOf[this.type] }
}
class TrackerDependency extends Bundle {
2013-01-22 02:17:26 +01:00
val master_xact_id = Bits(width = MASTER_XACT_ID_BITS)
}
2013-01-16 00:52:47 +01:00
class XactTrackerBroadcast(id: Int)(implicit conf: CoherenceHubConfiguration) extends Component {
val co = conf.co
val io = new Bundle {
val alloc_req = (new FIFOIO) { new TrackerAllocReq }.flip
val p_data = (new PipeIO) { new TrackerProbeData }.flip
val can_alloc = Bool(INPUT)
2013-01-22 02:17:26 +01:00
val grant_ack = Bool(INPUT)
val release_cnt_dec = Bits(INPUT, conf.ln.nTiles)
val probe_cnt_inc = Bits(INPUT, conf.ln.nTiles)
2012-12-13 20:39:14 +01:00
val tile_incoherent = Bits(INPUT, conf.ln.nTiles)
val release_data = (new PipeIO) { new ReleaseData }.flip
val acquire_data = (new PipeIO) { new AcquireData }.flip
2013-01-22 02:17:26 +01:00
val sent_grant_ack = Bool(INPUT)
val release_data_dep = (new PipeIO) { new TrackerDependency }.flip
val acquire_data_dep = (new PipeIO) { new TrackerDependency }.flip
val mem_req_cmd = (new FIFOIO) { new MemReqCmd }
val mem_req_data = (new FIFOIO) { new MemData }
val mem_req_lock = Bool(OUTPUT)
2013-01-22 02:17:26 +01:00
val probe = (new FIFOIO) { new Probe }
val busy = Bool(OUTPUT)
2012-07-13 03:12:49 +02:00
val addr = Bits(OUTPUT, PADDR_BITS - OFFSET_BITS)
2013-01-16 00:52:47 +01:00
val init_client_id = Bits(OUTPUT, conf.ln.idBits)
val release_client_id = Bits(OUTPUT, conf.ln.idBits)
2013-01-22 02:17:26 +01:00
val client_xact_id = Bits(OUTPUT, CLIENT_XACT_ID_BITS)
2012-12-13 20:39:14 +01:00
val sharer_count = Bits(OUTPUT, conf.ln.idBits+1)
2013-01-22 02:17:26 +01:00
val a_type = Bits(OUTPUT, ACQUIRE_TYPE_MAX_BITS)
val push_probe = Bits(OUTPUT, conf.ln.nTiles)
val pop_release = Bits(OUTPUT, conf.ln.nTiles)
val pop_release_data = Bits(OUTPUT, conf.ln.nTiles)
val pop_release_dep = Bits(OUTPUT, conf.ln.nTiles)
val pop_acquire = Bits(OUTPUT, conf.ln.nTiles)
val pop_acquire_data = Bits(OUTPUT, conf.ln.nTiles)
val pop_acquire_dep = Bits(OUTPUT, conf.ln.nTiles)
2013-01-22 02:17:26 +01:00
val send_grant_ack = Bool(OUTPUT)
}
2013-01-16 00:52:47 +01:00
def doMemReqWrite(req_cmd: FIFOIO[MemReqCmd], req_data: FIFOIO[MemData], lock: Bool, data: PipeIO[MemData], trigger: Bool, cmd_sent: Bool, pop_data: Bits, pop_dep: Bits, at_front_of_dep_queue: Bool, client_id: UFix) {
req_cmd.bits.rw := Bool(true)
req_data.bits := data.bits
when(req_cmd.ready && req_cmd.valid) {
cmd_sent := Bool(true)
}
2012-07-26 09:03:55 +02:00
when (at_front_of_dep_queue) {
2012-08-04 04:00:03 +02:00
req_cmd.valid := !cmd_sent && req_data.ready && data.valid
lock := data.valid || cmd_sent
2012-07-26 09:03:55 +02:00
when (req_cmd.ready || cmd_sent) {
req_data.valid := data.valid
when(req_data.ready) {
2013-01-16 00:52:47 +01:00
pop_data := UFix(1) << client_id
2012-07-26 09:03:55 +02:00
when (data.valid) {
mem_cnt := mem_cnt_next
when(mem_cnt === UFix(REFILL_CYCLES-1)) {
2013-01-16 00:52:47 +01:00
pop_dep := UFix(1) << client_id
2012-07-26 09:03:55 +02:00
trigger := Bool(false)
}
}
}
}
}
}
def doMemReqRead(req_cmd: FIFOIO[MemReqCmd], trigger: Bool) {
req_cmd.valid := Bool(true)
req_cmd.bits.rw := Bool(false)
when(req_cmd.ready) {
trigger := Bool(false)
}
}
val s_idle :: s_ack :: s_mem :: s_probe :: s_busy :: Nil = Enum(5){ UFix() }
val state = Reg(resetVal = s_idle)
2013-01-22 02:17:26 +01:00
val xact = Reg{ new Acquire }
2013-01-16 00:52:47 +01:00
val init_client_id_ = Reg{ Bits() }
val release_count = if (conf.ln.nTiles == 1) UFix(0) else Reg(resetVal = UFix(0, width = log2Up(conf.ln.nTiles)))
val probe_flags = Reg(resetVal = Bits(0, width = conf.ln.nTiles))
val release_client_id_ = Reg{ Bits() }
val x_needs_read = Reg(resetVal = Bool(false))
val acquire_data_needs_write = Reg(resetVal = Bool(false))
val release_data_needs_write = Reg(resetVal = Bool(false))
val x_w_mem_cmd_sent = Reg(resetVal = Bool(false))
val p_w_mem_cmd_sent = Reg(resetVal = Bool(false))
val mem_cnt = Reg(resetVal = UFix(0, width = log2Up(REFILL_CYCLES)))
val mem_cnt_next = mem_cnt + UFix(1)
val mem_cnt_max = ~UFix(0, width = log2Up(REFILL_CYCLES))
val probe_initial_flags = Bits(width = conf.ln.nTiles)
probe_initial_flags := Bits(0)
2012-12-13 20:39:14 +01:00
if (conf.ln.nTiles > 1) {
// issue self-probes for uncached read xacts to facilitate I$ coherence
// TODO: this is hackish; figure out how to do it more systematically
val probe_self = co match {
2013-01-22 02:17:26 +01:00
case u: CoherencePolicyWithUncached => u.isUncachedReadTransaction(io.alloc_req.bits.acquire)
case _ => Bool(false)
}
2013-01-16 00:52:47 +01:00
val myflag = Mux(probe_self, Bits(0), UFixToOH(io.alloc_req.bits.client_id(log2Up(conf.ln.nTiles)-1,0)))
probe_initial_flags := ~(io.tile_incoherent | myflag)
}
io.busy := state != s_idle
io.addr := xact.addr
2013-01-16 00:52:47 +01:00
io.init_client_id := init_client_id_
io.release_client_id := release_client_id_
2013-01-22 02:17:26 +01:00
io.client_xact_id := xact.client_xact_id
2012-12-13 20:39:14 +01:00
io.sharer_count := UFix(conf.ln.nTiles) // TODO: Broadcast only
2013-01-22 02:17:26 +01:00
io.a_type := xact.a_type
io.mem_req_cmd.valid := Bool(false)
io.mem_req_cmd.bits.rw := Bool(false)
io.mem_req_cmd.bits.addr := xact.addr
io.mem_req_cmd.bits.tag := UFix(id)
io.mem_req_data.valid := Bool(false)
io.mem_req_data.bits.data := UFix(0)
io.mem_req_lock := Bool(false)
2013-01-22 02:17:26 +01:00
io.probe.valid := Bool(false)
io.probe.bits.p_type := co.getProbeType(xact.a_type, UFix(0))
io.probe.bits.master_xact_id := UFix(id)
io.probe.bits.addr := xact.addr
io.push_probe := Bits(0, width = conf.ln.nTiles)
io.pop_release := Bits(0, width = conf.ln.nTiles)
io.pop_release_data := Bits(0, width = conf.ln.nTiles)
io.pop_release_dep := Bits(0, width = conf.ln.nTiles)
io.pop_acquire := Bits(0, width = conf.ln.nTiles)
io.pop_acquire_data := Bits(0, width = conf.ln.nTiles)
io.pop_acquire_dep := Bits(0, width = conf.ln.nTiles)
2013-01-22 02:17:26 +01:00
io.send_grant_ack := Bool(false)
switch (state) {
is(s_idle) {
when( io.alloc_req.valid && io.can_alloc ) {
2013-01-22 02:17:26 +01:00
xact := io.alloc_req.bits.acquire
2013-01-16 00:52:47 +01:00
init_client_id_ := io.alloc_req.bits.client_id
acquire_data_needs_write := co.messageHasData(io.alloc_req.bits.acquire)
2013-01-22 02:17:26 +01:00
x_needs_read := co.needsMemRead(io.alloc_req.bits.acquire.a_type, UFix(0))
probe_flags := probe_initial_flags
mem_cnt := UFix(0)
p_w_mem_cmd_sent := Bool(false)
x_w_mem_cmd_sent := Bool(false)
io.pop_acquire := UFix(1) << io.alloc_req.bits.client_id
2012-12-13 20:39:14 +01:00
if(conf.ln.nTiles > 1) {
release_count := PopCount(probe_initial_flags)
state := Mux(probe_initial_flags.orR, s_probe, s_mem)
} else state := s_mem
}
}
is(s_probe) {
when(probe_flags.orR) {
io.push_probe := probe_flags
2013-01-22 02:17:26 +01:00
io.probe.valid := Bool(true)
}
when(io.probe_cnt_inc.orR) {
probe_flags := probe_flags & ~io.probe_cnt_inc // unflag sent reqs
}
when(io.release_cnt_dec.orR) {
val dec = PopCount(io.release_cnt_dec)
io.pop_release := io.release_cnt_dec
if(conf.ln.nTiles > 1) release_count := release_count - dec
when(release_count === dec) {
state := s_mem
}
}
when(io.p_data.valid) {
release_data_needs_write := Bool(true)
release_client_id_ := io.p_data.bits.client_id
}
}
is(s_mem) {
when (release_data_needs_write) {
doMemReqWrite(io.mem_req_cmd,
io.mem_req_data,
io.mem_req_lock,
io.release_data,
release_data_needs_write,
p_w_mem_cmd_sent,
io.pop_release_data,
io.pop_release_dep,
io.release_data_dep.valid && (io.release_data_dep.bits.master_xact_id === UFix(id)),
release_client_id_)
} . elsewhen(acquire_data_needs_write) {
doMemReqWrite(io.mem_req_cmd,
io.mem_req_data,
io.mem_req_lock,
io.acquire_data,
acquire_data_needs_write,
x_w_mem_cmd_sent,
io.pop_acquire_data,
io.pop_acquire_dep,
io.acquire_data_dep.valid && (io.acquire_data_dep.bits.master_xact_id === UFix(id)),
2013-01-16 00:52:47 +01:00
init_client_id_)
} . elsewhen (x_needs_read) {
doMemReqRead(io.mem_req_cmd, x_needs_read)
} . otherwise {
2013-01-22 02:17:26 +01:00
state := Mux(co.needsAckReply(xact.a_type, UFix(0)), s_ack, s_busy)
}
}
is(s_ack) {
2013-01-22 02:17:26 +01:00
io.send_grant_ack := Bool(true)
when(io.sent_grant_ack) { state := s_busy }
}
is(s_busy) { // Nothing left to do but wait for transaction to complete
2013-01-22 02:17:26 +01:00
when (io.grant_ack) {
state := s_idle
}
}
}
}
2012-12-13 20:39:14 +01:00
case class CoherenceHubConfiguration(co: CoherencePolicy, ln: LogicalNetworkConfiguration)
class CoherenceHubAdapter(implicit conf: LogicalNetworkConfiguration) extends Component with MasterCoherenceAgent {
val io = new Bundle {
val net = (new TileLinkIO).flip
val hub = Vec(conf.nTiles) { new TileLinkIO }
}
2013-01-16 00:52:47 +01:00
val netClientProducedSubBundles = io.net.getClass.getMethods.filter( x =>
classOf[ClientSourcedIO[Data]].isAssignableFrom(x.getReturnType)).map{ m =>
m.invoke(io.net).asInstanceOf[ClientSourcedIO[LogicalNetworkIO[Data]]] }
val netMasterProducedSubBundles = io.net.getClass.getMethods.filter( x =>
classOf[MasterSourcedIO[Data]].isAssignableFrom(x.getReturnType)).map{ m =>
m.invoke(io.net).asInstanceOf[MasterSourcedIO[LogicalNetworkIO[Data]]] }
2013-01-16 00:52:47 +01:00
val hubClientProducedSubBundles = io.hub.map{ io => {
io.getClass.getMethods.filter( x =>
2013-01-16 00:52:47 +01:00
classOf[ClientSourcedIO[Data]].isAssignableFrom(x.getReturnType)).map{ m =>
m.invoke(io).asInstanceOf[ClientSourcedIO[LogicalNetworkIO[Data]]] }}}.transpose
val hubMasterProducedSubBundles = io.hub.map{ io => {
io.getClass.getMethods.filter( x =>
2013-01-16 00:52:47 +01:00
classOf[MasterSourcedIO[Data]].isAssignableFrom(x.getReturnType)).map{ m =>
m.invoke(io).asInstanceOf[MasterSourcedIO[LogicalNetworkIO[Data]]] }}}.transpose
2013-01-16 00:52:47 +01:00
hubMasterProducedSubBundles.zip(netMasterProducedSubBundles).foreach{ case(hub, net) => {
net.bits.header.src := UFix(0)
net.bits.header.dst := Vec(hub.map(_.valid)){Bool()}.indexWhere{s: Bool => s}
net.bits.payload := hub(0).bits.payload
net.valid := hub.map(_.valid).fold(Bool(false))(_||_)
hub.foreach( _.ready := net.ready)
}}
2013-01-16 00:52:47 +01:00
hubClientProducedSubBundles.zip(netClientProducedSubBundles).foreach{ case(hub, net) => {
hub.foreach(_.bits.header := net.bits.header)
hub.zipWithIndex.foreach{ case(h,i) => h.valid := (net.bits.header.src === UFix(i)) && net.valid }
hub.foreach(_.bits.payload := net.bits.payload)
net.ready := hub.map(_.ready).fold(Bool(false))(_||_)
}}
}
2012-12-13 20:39:14 +01:00
abstract class CoherenceHub(implicit conf: LogicalNetworkConfiguration) extends Component with MasterCoherenceAgent {
val io = new Bundle {
val tiles = Vec(conf.nTiles) { new TileLinkIO }.flip
val incoherent = Vec(conf.nTiles) { Bool() }.asInput
val mem = new ioMem
}
}
2012-12-13 20:39:14 +01:00
class CoherenceHubNull(implicit conf: CoherenceHubConfiguration) extends CoherenceHub()(conf.ln)
{
val co = conf.co.asInstanceOf[ThreeStateIncoherence]
val acquire = io.tiles(0).acquire
val is_write = acquire.bits.payload.a_type === co.acquireWriteback
acquire.ready := io.mem.req_cmd.ready && !(is_write && io.mem.resp.valid) //stall write req/resp to handle previous read resp
io.mem.req_cmd.valid := acquire.valid && !(is_write && io.mem.resp.valid)
io.mem.req_cmd.bits.rw := is_write
io.mem.req_cmd.bits.tag := acquire.bits.payload.client_xact_id
io.mem.req_cmd.bits.addr := acquire.bits.payload.addr
2013-01-22 02:17:26 +01:00
io.mem.req_data <> io.tiles(0).acquire_data
val grant = io.tiles(0).grant
grant.bits.payload.g_type := Mux(io.mem.resp.valid, co.grantData, co.grantAck)
grant.bits.payload.client_xact_id := Mux(io.mem.resp.valid, io.mem.resp.bits.tag, acquire.bits.payload.client_xact_id)
2013-01-22 02:17:26 +01:00
grant.bits.payload.master_xact_id := UFix(0) // don't care
grant.bits.payload.data := io.mem.resp.bits.data
grant.bits.payload.require_ack := Bool(true)
grant.valid := io.mem.resp.valid || acquire.valid && is_write && io.mem.req_cmd.ready
2013-01-22 02:17:26 +01:00
io.tiles(0).abort.valid := Bool(false)
io.tiles(0).grant_ack.ready := Bool(true)
io.tiles(0).probe.valid := Bool(false)
io.tiles(0).release.ready := Bool(true)
io.tiles(0).release_data.ready := Bool(true)
}
2012-12-13 20:39:14 +01:00
class CoherenceHubBroadcast(implicit conf: CoherenceHubConfiguration) extends CoherenceHub()(conf.ln)
{
2013-01-16 00:52:47 +01:00
implicit val lnConf = conf.ln
val co = conf.co
2013-01-16 00:52:47 +01:00
val trackerList = (0 until NGLOBAL_XACTS).map(new XactTrackerBroadcast(_))
2012-05-24 19:33:15 +02:00
val busy_arr = Vec(NGLOBAL_XACTS){ Bool() }
val addr_arr = Vec(NGLOBAL_XACTS){ Bits(width=PADDR_BITS-OFFSET_BITS) }
2013-01-16 00:52:47 +01:00
val init_client_id_arr = Vec(NGLOBAL_XACTS){ Bits(width=conf.ln.idBits) }
2013-01-22 02:17:26 +01:00
val client_xact_id_arr = Vec(NGLOBAL_XACTS){ Bits(width=CLIENT_XACT_ID_BITS) }
val a_type_arr = Vec(NGLOBAL_XACTS){ Bits(width=ACQUIRE_TYPE_MAX_BITS) }
2012-12-13 20:39:14 +01:00
val sh_count_arr = Vec(NGLOBAL_XACTS){ Bits(width=conf.ln.idBits) }
2013-01-22 02:17:26 +01:00
val send_grant_ack_arr = Vec(NGLOBAL_XACTS){ Bool() }
2012-05-24 19:33:15 +02:00
val do_free_arr = Vec(NGLOBAL_XACTS){ Bool() }
val release_cnt_dec_arr = VecBuf(NGLOBAL_XACTS){ Vec(conf.ln.nTiles){ Bool()} }
val probe_cnt_inc_arr = VecBuf(NGLOBAL_XACTS){ Vec(conf.ln.nTiles){ Bool()} }
2013-01-22 02:17:26 +01:00
val sent_grant_ack_arr = Vec(NGLOBAL_XACTS){ Bool() }
2013-01-16 00:52:47 +01:00
val p_data_client_id_arr = Vec(NGLOBAL_XACTS){ Bits(width=conf.ln.idBits) }
2012-05-24 19:33:15 +02:00
val p_data_valid_arr = Vec(NGLOBAL_XACTS){ Bool() }
for( i <- 0 until NGLOBAL_XACTS) {
val t = trackerList(i).io
busy_arr(i) := t.busy
addr_arr(i) := t.addr
2013-01-16 00:52:47 +01:00
init_client_id_arr(i) := t.init_client_id
2013-01-22 02:17:26 +01:00
client_xact_id_arr(i) := t.client_xact_id
a_type_arr(i) := t.a_type
sh_count_arr(i) := t.sharer_count
2013-01-22 02:17:26 +01:00
send_grant_ack_arr(i) := t.send_grant_ack
t.grant_ack := do_free_arr(i)
2013-01-16 00:52:47 +01:00
t.p_data.bits.client_id := p_data_client_id_arr(i)
t.p_data.valid := p_data_valid_arr(i)
t.release_cnt_dec := release_cnt_dec_arr(i).toBits
t.probe_cnt_inc := probe_cnt_inc_arr(i).toBits
t.tile_incoherent := io.incoherent.toBits
2013-01-22 02:17:26 +01:00
t.sent_grant_ack := sent_grant_ack_arr(i)
do_free_arr(i) := Bool(false)
2013-01-22 02:17:26 +01:00
sent_grant_ack_arr(i) := Bool(false)
2013-01-16 00:52:47 +01:00
p_data_client_id_arr(i) := Bits(0, width = conf.ln.idBits)
p_data_valid_arr(i) := Bool(false)
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles) {
release_cnt_dec_arr(i)(j) := Bool(false)
probe_cnt_inc_arr(i)(j) := Bool(false)
}
}
val release_data_dep_list = List.fill(conf.ln.nTiles)((new Queue(NGLOBAL_XACTS)){new TrackerDependency}) // depth must >= NPRIMARY
val acquire_data_dep_list = List.fill(conf.ln.nTiles)((new Queue(NGLOBAL_XACTS)){new TrackerDependency}) // depth should >= NPRIMARY
// Free finished transactions
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles ) {
val ack = io.tiles(j).grant_ack
when (ack.valid) {
do_free_arr(ack.bits.payload.master_xact_id) := Bool(true)
}
ack.ready := Bool(true)
}
// Reply to initial requestor
// Forward memory responses from mem to tile or arbitrate to ack
val mem_idx = io.mem.resp.bits.tag
2013-01-22 02:17:26 +01:00
val ack_idx = PriorityEncoder(send_grant_ack_arr.toBits)
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles ) {
2013-01-22 02:17:26 +01:00
val rep = io.tiles(j).grant
rep.bits.payload.g_type := UFix(0)
rep.bits.payload.client_xact_id := UFix(0)
rep.bits.payload.master_xact_id := UFix(0)
2013-01-16 00:52:47 +01:00
rep.bits.payload.data := io.mem.resp.bits.data
rep.bits.payload.require_ack := Bool(true)
rep.valid := Bool(false)
2013-01-16 00:52:47 +01:00
when(io.mem.resp.valid && (UFix(j) === init_client_id_arr(mem_idx))) {
2013-01-22 02:17:26 +01:00
rep.bits.payload.g_type := co.getGrantType(a_type_arr(mem_idx), sh_count_arr(mem_idx))
rep.bits.payload.client_xact_id := client_xact_id_arr(mem_idx)
rep.bits.payload.master_xact_id := mem_idx
rep.valid := Bool(true)
} . otherwise {
2013-01-22 02:17:26 +01:00
rep.bits.payload.g_type := co.getGrantType(a_type_arr(ack_idx), sh_count_arr(ack_idx))
rep.bits.payload.client_xact_id := client_xact_id_arr(ack_idx)
rep.bits.payload.master_xact_id := ack_idx
2013-01-16 00:52:47 +01:00
when (UFix(j) === init_client_id_arr(ack_idx)) {
2013-01-22 02:17:26 +01:00
rep.valid := send_grant_ack_arr.toBits.orR
sent_grant_ack_arr(ack_idx) := rep.ready
}
}
}
2013-01-22 02:17:26 +01:00
io.mem.resp.ready := io.tiles(init_client_id_arr(mem_idx)).grant.ready
// Create an arbiter for the one memory port
// We have to arbitrate between the different trackers' memory requests
// and once we have picked a request, get the right write data
2012-07-26 09:03:55 +02:00
val mem_req_cmd_arb = (new Arbiter(NGLOBAL_XACTS)) { new MemReqCmd() }
val mem_req_data_arb = (new LockingArbiter(NGLOBAL_XACTS)) { new MemData() }
for( i <- 0 until NGLOBAL_XACTS ) {
mem_req_cmd_arb.io.in(i) <> trackerList(i).io.mem_req_cmd
mem_req_data_arb.io.in(i) <> trackerList(i).io.mem_req_data
mem_req_data_arb.io.lock(i) <> trackerList(i).io.mem_req_lock
}
2012-07-26 09:03:55 +02:00
io.mem.req_cmd <> Queue(mem_req_cmd_arb.io.out)
io.mem.req_data <> Queue(mem_req_data_arb.io.out)
// Handle probe replies, which may or may not have data
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles ) {
val release = io.tiles(j).release
val release_data = io.tiles(j).release_data
val idx = release.bits.payload.master_xact_id
val pop_releases = trackerList.map(_.io.pop_release(j).toBool)
val do_pop = foldR(pop_releases)(_ || _)
release.ready := Bool(true)
release_data_dep_list(j).io.enq.valid := release.valid && co.messageHasData(release.bits.payload)
release_data_dep_list(j).io.enq.bits.master_xact_id := release.bits.payload.master_xact_id
release_data.ready := foldR(trackerList.map(_.io.pop_release_data(j)))(_ || _)
when (release.valid && co.messageHasData(release.bits.payload)) {
p_data_valid_arr(idx) := Bool(true)
2013-01-16 00:52:47 +01:00
p_data_client_id_arr(idx) := UFix(j)
}
release_data_dep_list(j).io.deq.ready := foldR(trackerList.map(_.io.pop_release_dep(j).toBool))(_||_)
}
for( i <- 0 until NGLOBAL_XACTS ) {
trackerList(i).io.release_data.valid := io.tiles(trackerList(i).io.release_client_id).release_data.valid
trackerList(i).io.release_data.bits := io.tiles(trackerList(i).io.release_client_id).release_data.bits.payload
trackerList(i).io.release_data_dep.valid := MuxLookup(trackerList(i).io.release_client_id, release_data_dep_list(0).io.deq.valid, (0 until conf.ln.nTiles).map( j => UFix(j) -> release_data_dep_list(j).io.deq.valid))
trackerList(i).io.release_data_dep.bits := MuxLookup(trackerList(i).io.release_client_id, release_data_dep_list(0).io.deq.bits, (0 until conf.ln.nTiles).map( j => UFix(j) -> release_data_dep_list(j).io.deq.bits))
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles) {
val release = io.tiles(j).release
release_cnt_dec_arr(i)(j) := release.valid && (release.bits.payload.master_xact_id === UFix(i))
}
}
// Nack conflicting transaction init attempts
val s_idle :: s_abort_drain :: s_abort_send :: Nil = Enum(3){ UFix() }
2012-12-13 20:39:14 +01:00
val abort_state_arr = Vec(conf.ln.nTiles) { Reg(resetVal = s_idle) }
val want_to_abort_arr = Vec(conf.ln.nTiles) { Bool() }
for( j <- 0 until conf.ln.nTiles ) {
val acquire = io.tiles(j).acquire
val acquire_data = io.tiles(j).acquire_data
2013-01-22 02:17:26 +01:00
val x_abort = io.tiles(j).abort
val abort_cnt = Reg(resetVal = UFix(0, width = log2Up(REFILL_CYCLES)))
2012-05-24 19:33:15 +02:00
val conflicts = Vec(NGLOBAL_XACTS) { Bool() }
for( i <- 0 until NGLOBAL_XACTS) {
val t = trackerList(i).io
conflicts(i) := t.busy && acquire.valid && co.isCoherenceConflict(t.addr, acquire.bits.payload.addr)
}
x_abort.bits.payload.client_xact_id := acquire.bits.payload.client_xact_id
want_to_abort_arr(j) := acquire.valid && (conflicts.toBits.orR || busy_arr.toBits.andR || (!acquire_data_dep_list(j).io.enq.ready && co.messageHasData(acquire.bits.payload)))
x_abort.valid := Bool(false)
switch(abort_state_arr(j)) {
is(s_idle) {
when(want_to_abort_arr(j)) {
when(co.messageHasData(acquire.bits.payload)) {
abort_state_arr(j) := s_abort_drain
} . otherwise {
abort_state_arr(j) := s_abort_send
}
}
}
is(s_abort_drain) { // raises acquire_data.ready below
when(acquire_data.valid) {
abort_cnt := abort_cnt + UFix(1)
when(abort_cnt === ~UFix(0, width = log2Up(REFILL_CYCLES))) {
abort_state_arr(j) := s_abort_send
}
}
}
is(s_abort_send) { // nothing is dequeued for now
x_abort.valid := Bool(true)
when(x_abort.ready) { // raises acquire.ready below
abort_state_arr(j) := s_idle
}
}
}
}
// Handle transaction initiation requests
// Only one allocation per cycle
// Init requests may or may not have data
val alloc_arb = (new Arbiter(NGLOBAL_XACTS)) { Bool() }
2012-12-13 20:39:14 +01:00
val init_arb = (new Arbiter(conf.ln.nTiles)) { new TrackerAllocReq }
for( i <- 0 until NGLOBAL_XACTS ) {
alloc_arb.io.in(i).valid := !trackerList(i).io.busy
trackerList(i).io.can_alloc := alloc_arb.io.in(i).ready
trackerList(i).io.alloc_req.bits := init_arb.io.out.bits
trackerList(i).io.alloc_req.valid := init_arb.io.out.valid
trackerList(i).io.acquire_data.bits := io.tiles(trackerList(i).io.init_client_id).acquire_data.bits.payload
trackerList(i).io.acquire_data.valid := io.tiles(trackerList(i).io.init_client_id).acquire_data.valid
trackerList(i).io.acquire_data_dep.bits := MuxLookup(trackerList(i).io.init_client_id, acquire_data_dep_list(0).io.deq.bits, (0 until conf.ln.nTiles).map( j => UFix(j) -> acquire_data_dep_list(j).io.deq.bits))
trackerList(i).io.acquire_data_dep.valid := MuxLookup(trackerList(i).io.init_client_id, acquire_data_dep_list(0).io.deq.valid, (0 until conf.ln.nTiles).map( j => UFix(j) -> acquire_data_dep_list(j).io.deq.valid))
}
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles ) {
val acquire = io.tiles(j).acquire
val acquire_data = io.tiles(j).acquire_data
val acquire_data_dep = acquire_data_dep_list(j).io.deq
2013-01-22 02:17:26 +01:00
val x_abort = io.tiles(j).abort
init_arb.io.in(j).valid := (abort_state_arr(j) === s_idle) && !want_to_abort_arr(j) && acquire.valid
init_arb.io.in(j).bits.acquire := acquire.bits.payload
2013-01-16 00:52:47 +01:00
init_arb.io.in(j).bits.client_id := UFix(j)
val pop_acquires = trackerList.map(_.io.pop_acquire(j).toBool)
val do_pop = foldR(pop_acquires)(_||_)
acquire_data_dep_list(j).io.enq.valid := do_pop && co.messageHasData(acquire.bits.payload) && (abort_state_arr(j) === s_idle)
acquire_data_dep_list(j).io.enq.bits.master_xact_id := OHToUFix(pop_acquires)
acquire.ready := (x_abort.valid && x_abort.ready) || do_pop
acquire_data.ready := (abort_state_arr(j) === s_abort_drain) || foldR(trackerList.map(_.io.pop_acquire_data(j).toBool))(_||_)
acquire_data_dep.ready := foldR(trackerList.map(_.io.pop_acquire_dep(j).toBool))(_||_)
}
alloc_arb.io.out.ready := init_arb.io.out.valid
// Handle probe request generation
// Must arbitrate for each request port
val probe_arb_arr = List.fill(conf.ln.nTiles)((new Arbiter(NGLOBAL_XACTS)) { new Probe() })
2012-12-13 20:39:14 +01:00
for( j <- 0 until conf.ln.nTiles ) {
for( i <- 0 until NGLOBAL_XACTS ) {
val t = trackerList(i).io
probe_arb_arr(j).io.in(i).bits := t.probe.bits
probe_arb_arr(j).io.in(i).valid := t.probe.valid && t.push_probe(j)
probe_cnt_inc_arr(i)(j) := probe_arb_arr(j).io.in(i).ready
}
FIFOedLogicalNetworkIOWrapper(probe_arb_arr(j).io.out) <> io.tiles(j).probe
}
}
2013-01-17 08:57:35 +01:00
abstract class CoherenceAgent(implicit conf: LogicalNetworkConfiguration) extends Component with MasterCoherenceAgent {
val io = new Bundle {
val network = (new TileLinkIO).flip
val incoherent = Vec(conf.nTiles) { Bool() }.asInput
val mem = new ioMem
}
}
class L2CoherenceAgent(implicit conf: CoherenceHubConfiguration) extends CoherenceAgent()(conf.ln)
{
implicit val lnConf = conf.ln
val co = conf.co
val trackerList = (0 until NGLOBAL_XACTS).map(new XactTracker(_))
val release_data_dep_q = (new Queue(NGLOBAL_XACTS)){new TrackerDependency} // depth must >= NPRIMARY
val acquire_data_dep_q = (new Queue(NGLOBAL_XACTS)){new TrackerDependency} // depth should >= NPRIMARY
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
val t = trackerList(i)
t.io.tile_incoherent := io.incoherent.toBits
t.io.mem_resp.valid := io.mem.resp.valid && (io.mem.resp.bits.tag === UFix(i))
t.io.mem_resp.bits := io.mem.resp.bits
}
io.mem.resp.ready := trackerList.map(_.io.mem_resp.ready).reduce(_||_)
// Handle transaction initiation requests
// Only one allocation per cycle
// Init requests may or may not have data
val acquire = io.network.acquire
val acquire_data = io.network.acquire_data
2013-01-22 02:17:26 +01:00
val x_abort = io.network.abort
val x_dep_deq = acquire_data_dep_q.io.deq
2013-01-17 08:57:35 +01:00
val s_idle :: s_abort_drain :: s_abort_send :: Nil = Enum(3){ UFix() }
val abort_state = Reg(resetVal = s_idle)
val abort_cnt = Reg(resetVal = UFix(0, width = log2Up(REFILL_CYCLES)))
val any_conflict = trackerList.map(_.io.has_conflict).reduce(_||_)
val all_busy = trackerList.map(_.io.busy).reduce(_&&_)
val want_to_abort = acquire.valid && (any_conflict || all_busy || (!acquire_data_dep_q.io.enq.ready && co.messageHasData(acquire.bits.payload)))
2013-01-17 08:57:35 +01:00
val alloc_arb = (new Arbiter(NGLOBAL_XACTS)) { Bool() }
for( i <- 0 until NGLOBAL_XACTS ) {
alloc_arb.io.in(i).valid := !trackerList(i).io.busy
trackerList(i).io.acquire.bits := acquire.bits
trackerList(i).io.acquire.valid := (abort_state === s_idle) && !want_to_abort && acquire.valid && alloc_arb.io.in(i).ready
2013-01-17 08:57:35 +01:00
trackerList(i).io.acquire_data.bits := acquire_data.bits
trackerList(i).io.acquire_data.valid := acquire_data.valid
trackerList(i).io.acquire_data_dep.bits := x_dep_deq.bits
trackerList(i).io.acquire_data_dep.valid := x_dep_deq.valid
2013-01-17 08:57:35 +01:00
}
val pop_acquire = trackerList.map(_.io.acquire.ready).reduce(_||_)
acquire.ready := (x_abort.valid && x_abort.ready) || pop_acquire
acquire_data.ready := (abort_state === s_abort_drain) || trackerList.map(_.io.acquire_data.ready).reduce(_||_)
acquire_data_dep_q.io.enq.valid := pop_acquire && co.messageHasData(acquire.bits.payload) && (abort_state === s_idle)
acquire_data_dep_q.io.enq.bits.master_xact_id := OHToUFix(trackerList.map(_.io.acquire.ready))
x_dep_deq.ready := trackerList.map(_.io.acquire_data_dep.ready).reduce(_||_)
2013-01-17 08:57:35 +01:00
alloc_arb.io.out.ready := acquire.valid
2013-01-17 08:57:35 +01:00
// Nack conflicting transaction init attempts
x_abort.bits.header.dst := acquire.bits.header.src
x_abort.bits.payload.client_xact_id := acquire.bits.payload.client_xact_id
2013-01-17 08:57:35 +01:00
x_abort.valid := Bool(false)
switch(abort_state) {
is(s_idle) {
when(want_to_abort) {
abort_state := Mux( co.messageHasData(acquire.bits.payload), s_abort_drain, s_abort_send)
2013-01-17 08:57:35 +01:00
}
}
is(s_abort_drain) { // raises acquire_data.ready below
when(acquire_data.valid) {
2013-01-17 08:57:35 +01:00
abort_cnt := abort_cnt + UFix(1)
when(abort_cnt === ~UFix(0, width = log2Up(REFILL_CYCLES))) {
abort_state := s_abort_send
}
}
}
is(s_abort_send) { // nothing is dequeued for now
x_abort.valid := Bool(true)
when(x_abort.ready) { // raises acquire.ready
2013-01-17 08:57:35 +01:00
abort_state := s_idle
}
}
}
// Handle probe request generation
val probe_arb = (new Arbiter(NGLOBAL_XACTS)){(new LogicalNetworkIO){ new Probe }}
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
val t = trackerList(i).io
probe_arb.io.in(i).bits := t.probe.bits
probe_arb.io.in(i).valid := t.probe.valid
t.probe.ready := probe_arb.io.in(i).ready
2013-01-17 08:57:35 +01:00
}
io.network.probe <> probe_arb.io.out
2013-01-17 08:57:35 +01:00
// Handle probe replies, which may or may not have data
val release = io.network.release
val release_data = io.network.release_data
val idx = release.bits.payload.master_xact_id
release.ready := trackerList.map(_.io.release.ready).reduce(_||_)
release_data.ready := trackerList.map(_.io.release_data.ready).reduce(_||_)
release_data_dep_q.io.enq.valid := release.valid && co.messageHasData(release.bits.payload)
release_data_dep_q.io.enq.bits.master_xact_id := release.bits.payload.master_xact_id
release_data_dep_q.io.deq.ready := trackerList.map(_.io.release_data_dep.ready).reduce(_||_)
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
trackerList(i).io.release_data.valid := release_data.valid
trackerList(i).io.release_data.bits := release_data.bits
trackerList(i).io.release_data_dep.valid := release_data_dep_q.io.deq.valid
trackerList(i).io.release_data_dep.bits := release_data_dep_q.io.deq.bits
trackerList(i).io.release.valid := release.valid && (idx === UFix(i))
trackerList(i).io.release.bits := release.bits
2013-01-17 08:57:35 +01:00
}
// Reply to initial requestor
// Forward memory responses from mem to tile or arbitrate to ack
2013-01-22 02:17:26 +01:00
val grant_arb = (new Arbiter(NGLOBAL_XACTS)){(new LogicalNetworkIO){ new Grant }}
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
val t = trackerList(i).io
2013-01-22 02:17:26 +01:00
grant_arb.io.in(i).bits := t.grant.bits
grant_arb.io.in(i).valid := t.grant.valid
t.grant.ready := grant_arb.io.in(i).ready
2013-01-17 08:57:35 +01:00
}
2013-01-22 02:17:26 +01:00
grant_arb.io.out.ready := Bool(false)
io.network.grant.valid := grant_arb.io.out.valid
io.network.grant.bits := grant_arb.io.out.bits
grant_arb.io.out.ready := io.network.grant.ready
2013-01-17 08:57:35 +01:00
when(io.mem.resp.valid) {
2013-01-22 02:17:26 +01:00
io.network.grant.valid := Bool(true)
io.network.grant.bits := Vec(trackerList.map(_.io.grant.bits)){(new LogicalNetworkIO){new Grant}}(io.mem.resp.bits.tag)
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
2013-01-22 02:17:26 +01:00
trackerList(i).io.grant.ready := (io.mem.resp.bits.tag === UFix(i)) && io.network.grant.ready
2013-01-17 08:57:35 +01:00
}
}
// Free finished transactions
val ack = io.network.grant_ack
2013-01-17 08:57:35 +01:00
for( i <- 0 until NGLOBAL_XACTS ) {
trackerList(i).io.free := ack.valid && (ack.bits.payload.master_xact_id === UFix(i))
2013-01-17 08:57:35 +01:00
}
ack.ready := Bool(true)
2013-01-17 08:57:35 +01:00
// Create an arbiter for the one memory port
// We have to arbitrate between the different trackers' memory requests
// and once we have picked a request, get the right write data
val mem_req_cmd_arb = (new Arbiter(NGLOBAL_XACTS)) { new MemReqCmd() }
val mem_req_data_arb = (new LockingArbiter(NGLOBAL_XACTS)) { new MemData() }
for( i <- 0 until NGLOBAL_XACTS ) {
mem_req_cmd_arb.io.in(i) <> trackerList(i).io.mem_req_cmd
mem_req_data_arb.io.in(i) <> trackerList(i).io.mem_req_data
mem_req_data_arb.io.lock(i) <> trackerList(i).io.mem_req_lock
}
io.mem.req_cmd <> Queue(mem_req_cmd_arb.io.out)
io.mem.req_data <> Queue(mem_req_data_arb.io.out)
}
class XactTracker(id: Int)(implicit conf: CoherenceHubConfiguration) extends Component {
val co = conf.co
implicit val ln = conf.ln
val io = new Bundle {
val acquire = (new FIFOIO){(new LogicalNetworkIO) { new Acquire }}.flip
val acquire_data = (new FIFOIO){(new LogicalNetworkIO) { new AcquireData }}.flip
val release = (new FIFOIO){(new LogicalNetworkIO) { new Release }}.flip
val release_data = (new FIFOIO){(new LogicalNetworkIO) { new ReleaseData }}.flip
2013-01-17 08:57:35 +01:00
val free = Bool(INPUT)
val tile_incoherent = Bits(INPUT, conf.ln.nTiles)
val release_data_dep = (new FIFOIO) { new TrackerDependency }.flip
val acquire_data_dep = (new FIFOIO) { new TrackerDependency }.flip
2013-01-17 08:57:35 +01:00
val mem_resp = (new FIFOIO) { new MemResp }.flip
val mem_req_cmd = (new FIFOIO) { new MemReqCmd }
val mem_req_data = (new FIFOIO) { new MemData }
val mem_req_lock = Bool(OUTPUT)
val probe = (new FIFOIO) {(new LogicalNetworkIO) { new Probe }}
2013-01-22 02:17:26 +01:00
val grant = (new FIFOIO) {(new LogicalNetworkIO) { new Grant }}
2013-01-17 08:57:35 +01:00
val busy = Bool(OUTPUT)
val has_conflict = Bool(OUTPUT)
}
val s_idle :: s_ack :: s_mem :: s_probe :: s_busy :: Nil = Enum(5){ UFix() }
val state = Reg(resetVal = s_idle)
2013-01-22 02:17:26 +01:00
val xact = Reg{ new Acquire }
2013-01-17 08:57:35 +01:00
val init_client_id_ = Reg(resetVal = UFix(0, width = log2Up(conf.ln.nTiles)))
//TODO: Will need id reg for merged release xacts
val init_sharer_cnt_ = Reg(resetVal = UFix(0, width = log2Up(conf.ln.nTiles)))
val release_count = if (conf.ln.nTiles == 1) UFix(0) else Reg(resetVal = UFix(0, width = log2Up(conf.ln.nTiles)))
val probe_flags = Reg(resetVal = Bits(0, width = conf.ln.nTiles))
2013-01-17 08:57:35 +01:00
val x_needs_read = Reg(resetVal = Bool(false))
val acquire_data_needs_write = Reg(resetVal = Bool(false))
val release_data_needs_write = Reg(resetVal = Bool(false))
2013-01-17 08:57:35 +01:00
val x_w_mem_cmd_sent = Reg(resetVal = Bool(false))
val p_w_mem_cmd_sent = Reg(resetVal = Bool(false))
val mem_cnt = Reg(resetVal = UFix(0, width = log2Up(REFILL_CYCLES)))
val mem_cnt_next = mem_cnt + UFix(1)
val mem_cnt_max = ~UFix(0, width = log2Up(REFILL_CYCLES))
val probe_initial_flags = Bits(width = conf.ln.nTiles)
probe_initial_flags := Bits(0)
2013-01-17 08:57:35 +01:00
if (conf.ln.nTiles > 1) {
// issue self-probes for uncached read xacts to facilitate I$ coherence
// TODO: this is hackish; figure out how to do it more systematically
val probe_self = co match {
case u: CoherencePolicyWithUncached => u.isUncachedReadTransaction(io.acquire.bits.payload)
2013-01-17 08:57:35 +01:00
case _ => Bool(false)
}
val myflag = Mux(probe_self, Bits(0), UFixToOH(io.acquire.bits.header.src(log2Up(conf.ln.nTiles)-1,0)))
probe_initial_flags := ~(io.tile_incoherent | myflag)
2013-01-17 08:57:35 +01:00
}
2013-01-22 02:17:26 +01:00
val all_grants_require_acks = Bool(true)
2013-01-17 08:57:35 +01:00
io.busy := state != s_idle
io.has_conflict := co.isCoherenceConflict(xact.addr, io.acquire.bits.payload.addr) && (state != s_idle)
2013-01-17 08:57:35 +01:00
io.mem_req_cmd.valid := Bool(false)
io.mem_req_cmd.bits.rw := Bool(false)
io.mem_req_cmd.bits.addr := xact.addr
io.mem_req_cmd.bits.tag := UFix(id)
io.mem_req_data.valid := Bool(false)
io.mem_req_data.bits.data := UFix(0)
io.mem_req_lock := Bool(false)
io.probe.valid := Bool(false)
io.probe.bits.payload.p_type := co.getProbeType(xact.a_type, UFix(0))
io.probe.bits.payload.master_xact_id := UFix(id)
io.probe.bits.payload.addr := xact.addr
io.probe.bits.header.dst := UFix(0)
2013-01-22 02:17:26 +01:00
io.grant.bits.payload.data := io.mem_resp.bits.data
io.grant.bits.payload.g_type := co.getGrantType(xact.a_type, init_sharer_cnt_)
io.grant.bits.payload.client_xact_id := xact.client_xact_id
io.grant.bits.payload.master_xact_id := UFix(id)
io.grant.bits.payload.require_ack := all_grants_require_acks
io.grant.bits.header.dst := init_client_id_
io.grant.valid := (io.mem_resp.valid && (UFix(id) === io.mem_resp.bits.tag))
io.acquire.ready := Bool(false)
io.acquire_data.ready := Bool(false)
io.acquire_data_dep.ready := Bool(false)
io.release.ready := Bool(false)
io.release_data.ready := Bool(false)
io.release_data_dep.ready := Bool(false)
2013-01-22 02:17:26 +01:00
io.mem_resp.ready := io.grant.ready
2013-01-17 08:57:35 +01:00
switch (state) {
is(s_idle) {
when( io.acquire.valid ) {
xact := io.acquire.bits.payload
init_client_id_ := io.acquire.bits.header.src
2013-01-17 08:57:35 +01:00
init_sharer_cnt_ := UFix(conf.ln.nTiles) // TODO: Broadcast only
acquire_data_needs_write := co.messageHasData(io.acquire.bits.payload)
x_needs_read := co.needsMemRead(io.acquire.bits.payload.a_type, UFix(0))
probe_flags := probe_initial_flags
2013-01-17 08:57:35 +01:00
mem_cnt := UFix(0)
p_w_mem_cmd_sent := Bool(false)
x_w_mem_cmd_sent := Bool(false)
io.acquire.ready := Bool(true)
2013-01-17 08:57:35 +01:00
if(conf.ln.nTiles > 1) {
release_count := PopCount(probe_initial_flags)
state := Mux(probe_initial_flags.orR, s_probe, s_mem)
2013-01-17 08:57:35 +01:00
} else state := s_mem
}
}
is(s_probe) {
val curr_p_id = PriorityEncoder(probe_flags)
when(probe_flags.orR) {
io.probe.valid := Bool(true)
io.probe.bits.header.dst := curr_p_id
2013-01-17 08:57:35 +01:00
}
when(io.probe.ready) {
probe_flags := probe_flags & ~(UFixToOH(curr_p_id))
2013-01-17 08:57:35 +01:00
}
when(io.release.valid) {
io.release.ready := Bool(true)
if(conf.ln.nTiles > 1) release_count := release_count - UFix(1)
when(release_count === UFix(1)) {
2013-01-17 08:57:35 +01:00
state := s_mem
}
release_data_needs_write := co.messageHasData(io.release.bits.payload)
2013-01-17 08:57:35 +01:00
}
}
is(s_mem) {
when (release_data_needs_write) {
2013-01-17 08:57:35 +01:00
doMemReqWrite(io.mem_req_cmd,
io.mem_req_data,
io.mem_req_lock,
io.release_data,
release_data_needs_write,
2013-01-17 08:57:35 +01:00
p_w_mem_cmd_sent,
io.release_data_dep.ready,
io.release_data_dep.valid && (io.release_data_dep.bits.master_xact_id === UFix(id)))
} . elsewhen(acquire_data_needs_write) {
2013-01-17 08:57:35 +01:00
doMemReqWrite(io.mem_req_cmd,
io.mem_req_data,
io.mem_req_lock,
io.acquire_data,
acquire_data_needs_write,
2013-01-17 08:57:35 +01:00
x_w_mem_cmd_sent,
io.acquire_data_dep.ready,
io.acquire_data_dep.valid && (io.acquire_data_dep.bits.master_xact_id === UFix(id)))
2013-01-17 08:57:35 +01:00
} . elsewhen (x_needs_read) {
doMemReqRead(io.mem_req_cmd, x_needs_read)
} . otherwise {
2013-01-22 02:17:26 +01:00
state := Mux(co.needsAckReply(xact.a_type, UFix(0)), s_ack,
Mux(all_grants_require_acks, s_busy, s_idle))
2013-01-17 08:57:35 +01:00
}
}
is(s_ack) {
2013-01-22 02:17:26 +01:00
io.grant.valid := Bool(true)
when(io.grant.ready) { state := Mux(all_grants_require_acks, s_busy, s_idle) }
2013-01-17 08:57:35 +01:00
}
is(s_busy) { // Nothing left to do but wait for transaction to complete
when (io.free) {
state := s_idle
}
}
}
def doMemReqWrite[T <: Data](req_cmd: FIFOIO[MemReqCmd], req_data: FIFOIO[MemData], lock: Bool, data: FIFOIO[LogicalNetworkIO[T]], trigger: Bool, cmd_sent: Bool, pop_dep: Bool, at_front_of_dep_queue: Bool) {
req_cmd.bits.rw := Bool(true)
req_data.bits := data.bits.payload
when(req_cmd.ready && req_cmd.valid) {
cmd_sent := Bool(true)
}
when (at_front_of_dep_queue) {
req_cmd.valid := !cmd_sent && req_data.ready && data.valid
lock := data.valid || cmd_sent
when (req_cmd.ready || cmd_sent) {
req_data.valid := data.valid
when(req_data.ready) {
data.ready:= Bool(true)
when (data.valid) {
mem_cnt := mem_cnt_next
when(mem_cnt === UFix(REFILL_CYCLES-1)) {
pop_dep := Bool(true)
trigger := Bool(false)
}
}
}
}
}
}
def doMemReqRead(req_cmd: FIFOIO[MemReqCmd], trigger: Bool) {
req_cmd.valid := Bool(true)
req_cmd.bits.rw := Bool(false)
when(req_cmd.ready) {
trigger := Bool(false)
}
}
}