1
0
rocket-chip/src/main/scala/util/AsyncQueue.scala

112 lines
3.6 KiB
Scala
Raw Normal View History

2016-09-14 00:30:09 +02:00
// See LICENSE for license details.
package util
2016-09-14 00:30:09 +02:00
import Chisel._
object GrayCounter {
def apply(bits: Int, increment: Bool = Bool(true)): UInt = {
val incremented = Wire(UInt(width=bits))
val binary = AsyncResetReg(incremented, 0)
incremented := binary + increment.asUInt()
2016-09-14 00:30:09 +02:00
incremented ^ (incremented >> UInt(1))
}
}
object AsyncGrayCounter {
def apply(in: UInt, sync: Int): UInt = {
val syncv = List.fill(sync)(Module (new AsyncResetRegVec(w = in.getWidth, 0)))
syncv.last.io.d := in
syncv.last.io.en := Bool(true)
(syncv.init zip syncv.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := Bool(true)
}
syncv.head.io.q
2016-09-14 00:30:09 +02:00
}
}
class AsyncQueueSource[T <: Data](gen: T, depth: Int, sync: Int) extends Module {
2016-09-14 00:30:09 +02:00
val bits = log2Ceil(depth)
val io = new Bundle {
// These come from the source domain
val enq = Decoupled(gen).flip
2016-09-14 00:30:09 +02:00
// These cross to the sink clock domain
val ridx = UInt(INPUT, width = bits+1)
val widx = UInt(OUTPUT, width = bits+1)
val mem = Vec(depth, gen).asOutput
// Reset for the other side
val sink_reset_n = Bool().flip
2016-09-14 00:30:09 +02:00
}
val mem = Reg(Vec(depth, gen)) //This does NOT need to be asynchronously reset.
val widx = GrayCounter(bits+1, io.enq.fire())
val ridx = AsyncGrayCounter(io.ridx, sync)
2016-09-14 00:30:09 +02:00
val ready = widx =/= (ridx ^ UInt(depth | depth >> 1))
val index = if (depth == 1) UInt(0) else io.widx(bits-1, 0) ^ (io.widx(bits, bits) << (bits-1))
when (io.enq.fire()) { mem(index) := io.enq.bits }
val ready_reg = AsyncResetReg(ready, 0)
io.enq.ready := ready_reg
val widx_reg = AsyncResetReg(widx, 0)
io.widx := widx_reg
2016-09-14 00:30:09 +02:00
io.mem := mem
}
class AsyncQueueSink[T <: Data](gen: T, depth: Int, sync: Int) extends Module {
2016-09-14 00:30:09 +02:00
val bits = log2Ceil(depth)
val io = new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val ridx = UInt(OUTPUT, width = bits+1)
val widx = UInt(INPUT, width = bits+1)
val mem = Vec(depth, gen).asInput
// Reset for the other side
val source_reset_n = Bool().flip
2016-09-14 00:30:09 +02:00
}
val ridx = GrayCounter(bits+1, io.deq.fire())
val widx = AsyncGrayCounter(io.widx, sync)
2016-09-14 00:30:09 +02:00
val valid = ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (depth == 1) UInt(0) else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
io.deq.bits := RegEnable(io.mem(index), valid)
io.deq.valid := AsyncResetReg(valid, 0)
io.ridx := AsyncResetReg(ridx, 0)
2016-09-14 00:30:09 +02:00
}
class AsyncQueue[T <: Data](gen: T, depth: Int = 8, sync: Int = 3) extends Crossing[T] {
require (sync >= 2)
require (depth > 0 && isPow2(depth))
val io = new CrossingIO(gen)
val source = Module(new AsyncQueueSource(gen, depth, sync))
val sink = Module(new AsyncQueueSink (gen, depth, sync))
source.clock := io.enq_clock
source.reset := io.enq_reset
sink.clock := io.deq_clock
sink.reset := io.deq_reset
2016-09-14 00:30:09 +02:00
source.io.sink_reset_n := !io.deq_reset
sink.io.source_reset_n := !io.enq_reset
2016-09-14 00:30:09 +02:00
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.mem := source.io.mem
sink.io.widx := source.io.widx
source.io.ridx := sink.io.ridx
}