2011-10-26 08:02:47 +02:00
|
|
|
package Top {
|
|
|
|
|
|
|
|
import Chisel._
|
|
|
|
import Node._;
|
|
|
|
import scala.math._;
|
|
|
|
|
|
|
|
// interface between I$ and processor (32 bits wide)
|
|
|
|
class ioImem(view: List[String] = null) extends Bundle (view)
|
|
|
|
{
|
|
|
|
val req_addr = UFix(32, 'input);
|
|
|
|
val req_val = Bool('input);
|
|
|
|
val req_rdy = Bool('output);
|
|
|
|
val resp_data = Bits(32, 'output);
|
|
|
|
val resp_val = Bool('output);
|
|
|
|
}
|
|
|
|
|
|
|
|
// interface between I$ and memory (128 bits wide)
|
|
|
|
class ioIcache(view: List[String] = null) extends Bundle (view)
|
|
|
|
{
|
|
|
|
val req_addr = UFix(32, 'input);
|
|
|
|
val req_val = Bool('input);
|
|
|
|
val req_rdy = Bool('output);
|
|
|
|
val resp_data = Bits(128, 'output);
|
|
|
|
val resp_val = Bool('output);
|
|
|
|
}
|
|
|
|
|
2011-11-05 04:52:21 +01:00
|
|
|
class ioICacheDM extends Bundle()
|
|
|
|
{
|
2011-10-26 08:02:47 +02:00
|
|
|
val cpu = new ioImem();
|
|
|
|
val mem = new ioIcache().flip();
|
|
|
|
}
|
|
|
|
|
|
|
|
// basic direct mapped instruction cache
|
|
|
|
// parameters :
|
|
|
|
// lines = # cache lines
|
|
|
|
// addr_bits = address width (word addressable) bits
|
|
|
|
// 32 bit wide cpu port, 128 bit wide memory port, 64 byte cachelines
|
|
|
|
|
|
|
|
class rocketICacheDM(lines: Int, addrbits : Int) extends Component {
|
|
|
|
val io = new ioICacheDM();
|
|
|
|
|
|
|
|
val indexbits = ceil(log10(lines)/log10(2)).toInt;
|
|
|
|
val offsetbits = 6;
|
|
|
|
val tagmsb = addrbits - 1;
|
|
|
|
val taglsb = indexbits+offsetbits;
|
|
|
|
val indexmsb = taglsb-1;
|
|
|
|
val indexlsb = offsetbits;
|
|
|
|
val offsetmsb = indexlsb-1;
|
|
|
|
val offsetlsb = 2;
|
|
|
|
|
|
|
|
val s_reset :: s_ready :: s_request :: s_refill_wait :: s_refill :: s_resolve_miss :: Nil = Enum(6) { UFix() };
|
|
|
|
val state = Reg(resetVal = s_reset);
|
|
|
|
|
|
|
|
val r_cpu_req_addr = Reg(Bits(0, addrbits));
|
2011-11-05 04:52:21 +01:00
|
|
|
when (io.cpu.req_val && ((state === s_ready) || (state === s_resolve_miss))) {
|
|
|
|
r_cpu_req_addr <== io.cpu.req_addr;
|
|
|
|
}
|
2011-10-26 08:02:47 +02:00
|
|
|
|
|
|
|
val r_cpu_req_val = Reg(Bool(false));
|
2011-11-05 04:52:21 +01:00
|
|
|
when ((state === s_ready) || (state === s_resolve_miss)) {
|
|
|
|
r_cpu_req_val <== io.cpu.req_val;
|
|
|
|
}
|
|
|
|
otherwise {
|
|
|
|
r_cpu_req_val <== Bool(false);
|
|
|
|
}
|
2011-10-26 08:02:47 +02:00
|
|
|
|
|
|
|
val refill_count = Reg(resetVal = UFix(0,2));
|
2011-11-05 04:52:21 +01:00
|
|
|
when (io.mem.resp_val) {
|
|
|
|
refill_count <== refill_count + UFix(1);
|
|
|
|
}
|
2011-10-26 08:02:47 +02:00
|
|
|
|
|
|
|
// tag array
|
|
|
|
val tag_wdata = r_cpu_req_addr(tagmsb, taglsb);
|
|
|
|
val tag_waddr = r_cpu_req_addr(indexmsb, indexlsb).toUFix;
|
|
|
|
val tag_we = (state === s_refill_wait) && io.mem.resp_val;
|
|
|
|
val tag_array = Mem(lines, tag_we, tag_waddr, tag_wdata);
|
|
|
|
val tag_raddr = io.cpu.req_addr(indexmsb, indexlsb);;
|
|
|
|
val tag_lookup = Reg(tag_array.read(tag_raddr));
|
|
|
|
|
|
|
|
// valid bit array
|
|
|
|
val vb_array = Reg(resetVal = Bits(0, lines));
|
|
|
|
val vb_rdata = Reg(vb_array(io.cpu.req_addr(indexmsb, indexlsb)));
|
|
|
|
|
2011-11-05 04:52:21 +01:00
|
|
|
when ((state === s_refill_wait) && io.mem.resp_val) {
|
|
|
|
vb_array <== vb_array.bitSet(r_cpu_req_addr(indexmsb, indexlsb).toUFix, UFix(1,1));
|
|
|
|
}
|
2011-10-26 08:02:47 +02:00
|
|
|
|
|
|
|
val tag_match = vb_rdata.toBool && (tag_lookup === r_cpu_req_addr(tagmsb, taglsb));
|
|
|
|
|
|
|
|
// data array
|
|
|
|
val data_array_waddr = Cat(r_cpu_req_addr(indexmsb, indexlsb), refill_count).toUFix;
|
|
|
|
val data_array = Mem(lines*4, io.mem.resp_val, data_array_waddr, io.mem.resp_data);
|
|
|
|
val data_array_raddr = Cat(io.cpu.req_addr(indexmsb, indexlsb), io.cpu.req_addr(offsetmsb, offsetmsb-1));
|
|
|
|
val data_array_read = data_array(data_array_raddr);
|
|
|
|
val data_array_rdata = Reg(data_array_read);
|
|
|
|
|
|
|
|
io.cpu.resp_val := (r_cpu_req_val && tag_match && (state === s_ready)); // || (state === s_resolve_miss);
|
|
|
|
io.cpu.req_rdy := ((state === s_ready) && (!r_cpu_req_val || (r_cpu_req_val && tag_match))); // || (state === s_resolve_miss);
|
|
|
|
io.cpu.resp_data := MuxLookup(r_cpu_req_addr(offsetmsb-2, offsetlsb).toUFix, data_array_rdata(127, 96),
|
|
|
|
Array(UFix(2) -> data_array_rdata(95,64),
|
|
|
|
UFix(1) -> data_array_rdata(63,32),
|
|
|
|
UFix(0) -> data_array_rdata(31,0)));
|
|
|
|
|
|
|
|
io.mem.req_val := (state === s_request);
|
|
|
|
io.mem.req_addr := Cat(r_cpu_req_addr(tagmsb, indexlsb), Bits(0,2)).toUFix;
|
|
|
|
|
|
|
|
// control state machine
|
|
|
|
switch (state) {
|
|
|
|
is (s_reset) {
|
|
|
|
state <== s_ready;
|
|
|
|
}
|
|
|
|
is (s_ready) {
|
|
|
|
when (r_cpu_req_val && !tag_match) { state <== s_request; }
|
|
|
|
}
|
|
|
|
is (s_request)
|
|
|
|
{
|
|
|
|
when (io.mem.req_rdy) { state <== s_refill_wait; }
|
|
|
|
}
|
|
|
|
is (s_refill_wait) {
|
|
|
|
when (io.mem.resp_val) { state <== s_refill; }
|
|
|
|
}
|
|
|
|
is (s_refill) {
|
|
|
|
when (io.mem.resp_val && (refill_count === UFix(3,2))) { state <== s_resolve_miss; }
|
|
|
|
}
|
|
|
|
is (s_resolve_miss) {
|
|
|
|
state <== s_ready;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|