1
0
rocket-chip/rocket/src/main/scala/icache.scala
2013-09-12 17:55:58 -07:00

279 lines
9.7 KiB
Scala

package rocket
import Chisel._
import uncore._
import Util._
case class ICacheConfig(sets: Int, assoc: Int,
ntlb: Int = 8, nbtb: Int = 8,
code: Code = new IdentityCode)
{
val w = 1
val ibytes = 4
val dm = assoc == 1
val lines = sets * assoc
val databits = MEM_DATA_BITS
val idxbits = log2Up(sets)
val offbits = OFFSET_BITS
val untagbits = idxbits + offbits
val tagbits = PADDR_BITS - untagbits
require(isPow2(sets) && isPow2(assoc))
require(isPow2(w) && isPow2(ibytes))
require(PGIDX_BITS >= untagbits)
}
class FrontendReq extends Bundle {
val pc = UInt(width = VADDR_BITS+1)
val mispredict = Bool()
val taken = Bool()
val currentpc = UInt(width = VADDR_BITS+1)
}
class FrontendResp(implicit conf: ICacheConfig) extends Bundle {
val pc = UInt(width = VADDR_BITS+1) // ID stage PC
val data = Bits(width = conf.ibytes*8)
val taken = Bool()
val xcpt_ma = Bool()
val xcpt_if = Bool()
override def clone = new FrontendResp().asInstanceOf[this.type]
}
class CPUFrontendIO(implicit conf: ICacheConfig) extends Bundle {
val req = Valid(new FrontendReq)
val resp = Decoupled(new FrontendResp).flip
val ptw = new TLBPTWIO().flip
val invalidate = Bool(OUTPUT)
}
class Frontend(implicit c: ICacheConfig, tl: TileLinkConfiguration) extends Module
{
val io = new Bundle {
val cpu = new CPUFrontendIO()(c).flip
val mem = new UncachedTileLinkIO
}
val btb = Module(new rocketDpathBTB(c.nbtb))
val icache = Module(new ICache)
val tlb = Module(new TLB(c.ntlb))
val s1_pc_ = Reg(UInt())
val s1_pc = s1_pc_ & SInt(-2) // discard LSB of PC (throughout the pipeline)
val s1_same_block = Reg(Bool())
val s2_valid = Reg(init=Bool(true))
val s2_pc = Reg(init=UInt(START_ADDR))
val s2_btb_hit = Reg(init=Bool(false))
val s2_xcpt_if = Reg(init=Bool(false))
val btbTarget = Cat(btb.io.target(VADDR_BITS-1), btb.io.target)
val pcp4_0 = s1_pc + UInt(c.ibytes)
val pcp4 = Cat(s1_pc(VADDR_BITS-1) & pcp4_0(VADDR_BITS-1), pcp4_0(VADDR_BITS-1,0))
val icmiss = s2_valid && !icache.io.resp.valid
val predicted_npc = Mux(btb.io.hit, btbTarget, pcp4)
val npc = Mux(icmiss, s2_pc, predicted_npc).toUInt
val s0_same_block = !icmiss && !io.cpu.req.valid && (predicted_npc >> log2Up(c.databits/8)) === (s1_pc >> log2Up(c.databits/8))
val stall = io.cpu.resp.valid && !io.cpu.resp.ready
when (!stall) {
s1_same_block := s0_same_block && !tlb.io.resp.miss
s1_pc_ := npc
s2_valid := !icmiss
when (!icmiss) {
s2_pc := s1_pc
s2_btb_hit := btb.io.hit
s2_xcpt_if := tlb.io.resp.xcpt_if
}
}
when (io.cpu.req.valid) {
s1_same_block := Bool(false)
s1_pc_ := io.cpu.req.bits.pc
s2_valid := Bool(false)
}
btb.io.current_pc := s1_pc
btb.io.wen := io.cpu.req.bits.mispredict
btb.io.clr := !io.cpu.req.bits.taken
btb.io.correct_pc := io.cpu.req.bits.currentpc
btb.io.correct_target := io.cpu.req.bits.pc
btb.io.invalidate := io.cpu.invalidate || io.cpu.ptw.invalidate
tlb.io.ptw <> io.cpu.ptw
tlb.io.req.valid := !stall && !icmiss
tlb.io.req.bits.vpn := s1_pc >> UInt(PGIDX_BITS)
tlb.io.req.bits.asid := UInt(0)
tlb.io.req.bits.passthrough := Bool(false)
tlb.io.req.bits.instruction := Bool(true)
icache.io.mem <> io.mem
icache.io.req.valid := !stall && !s0_same_block
icache.io.req.bits.idx := Mux(io.cpu.req.valid, io.cpu.req.bits.pc, npc)
icache.io.invalidate := io.cpu.invalidate
icache.io.req.bits.ppn := tlb.io.resp.ppn
icache.io.req.bits.kill := io.cpu.req.valid || tlb.io.resp.miss || icmiss
icache.io.resp.ready := !stall && !s1_same_block
io.cpu.resp.valid := s2_valid && (s2_xcpt_if || icache.io.resp.valid)
io.cpu.resp.bits.pc := s2_pc
io.cpu.resp.bits.data := icache.io.resp.bits.datablock >> (s2_pc(log2Up(c.databits/8)-1,log2Up(c.ibytes)) << log2Up(c.ibytes*8))
io.cpu.resp.bits.taken := s2_btb_hit
io.cpu.resp.bits.xcpt_ma := s2_pc(log2Up(c.ibytes)-1,0) != UInt(0)
io.cpu.resp.bits.xcpt_if := s2_xcpt_if
}
class ICacheReq extends Bundle {
val idx = UInt(width = PGIDX_BITS)
val ppn = UInt(width = PPN_BITS) // delayed one cycle
val kill = Bool() // delayed one cycle
}
class ICacheResp(implicit c: ICacheConfig) extends Bundle {
val data = Bits(width = c.ibytes*8)
val datablock = Bits(width = c.databits)
override def clone = new ICacheResp().asInstanceOf[this.type]
}
class ICache(implicit c: ICacheConfig, tl: TileLinkConfiguration) extends Module
{
implicit val lnConf = tl.ln
val io = new Bundle {
val req = Valid(new ICacheReq).flip
val resp = Decoupled(new ICacheResp)
val invalidate = Bool(INPUT)
val mem = new UncachedTileLinkIO
}
val s_ready :: s_request :: s_refill_wait :: s_refill :: Nil = Enum(UInt(), 4)
val state = Reg(init=s_ready)
val invalidated = Reg(Bool())
val stall = !io.resp.ready
val rdy = Bool()
val s2_valid = Reg(init=Bool(false))
val s2_addr = Reg(UInt(width = PADDR_BITS))
val s2_any_tag_hit = Bool()
val s1_valid = Reg(init=Bool(false))
val s1_pgoff = Reg(UInt(width = PGIDX_BITS))
val s1_addr = Cat(io.req.bits.ppn, s1_pgoff).toUInt
val s1_tag = s1_addr(c.tagbits+c.untagbits-1,c.untagbits)
val s0_valid = io.req.valid || s1_valid && stall
val s0_pgoff = Mux(io.req.valid, io.req.bits.idx, s1_pgoff)
s1_valid := io.req.valid && rdy || s1_valid && stall && !io.req.bits.kill
when (io.req.valid && rdy) {
s1_pgoff := s0_pgoff
}
s2_valid := s1_valid && rdy && !io.req.bits.kill || io.resp.valid && stall
when (s1_valid && rdy && !stall) {
s2_addr := s1_addr
}
val s2_tag = s2_addr(c.tagbits+c.untagbits-1,c.untagbits)
val s2_idx = s2_addr(c.untagbits-1,c.offbits)
val s2_offset = s2_addr(c.offbits-1,0)
val s2_hit = s2_valid && s2_any_tag_hit
val s2_miss = s2_valid && !s2_any_tag_hit
rdy := state === s_ready && !s2_miss
//assert(!co.isVoluntary(io.mem.grant.bits.payload) || !io.mem.grant.valid, "UncachedRequestors shouldn't get voluntary grants.")
val (rf_cnt, refill_done) = Counter(io.mem.grant.valid, REFILL_CYCLES)
val repl_way = if (c.dm) UInt(0) else LFSR16(s2_miss)(log2Up(c.assoc)-1,0)
val enc_tagbits = c.code.width(c.tagbits)
val tag_array = Mem(Bits(width = enc_tagbits*c.assoc), c.sets, seqRead = true)
val tag_raddr = Reg(UInt())
when (refill_done) {
val wmask = FillInterleaved(enc_tagbits, if (c.dm) Bits(1) else UIntToOH(repl_way))
val tag = c.code.encode(s2_tag).toUInt
tag_array.write(s2_idx, Fill(c.assoc, tag), wmask)
}
// /*.else*/when (s0_valid) { // uncomment ".else" to infer 6T SRAM
.elsewhen (s0_valid) {
tag_raddr := s0_pgoff(c.untagbits-1,c.offbits)
}
val vb_array = Reg(init=Bits(0, c.lines))
when (refill_done && !invalidated) {
vb_array := vb_array.bitSet(Cat(repl_way, s2_idx), Bool(true))
}
when (io.invalidate) {
vb_array := Bits(0)
invalidated := Bool(true)
}
val s2_disparity = Vec.fill(c.assoc){Bool()}
for (i <- 0 until c.assoc)
when (s2_valid && s2_disparity(i)) { vb_array := vb_array.bitSet(Cat(UInt(i), s2_idx), Bool(false)) }
val s1_tag_match = Vec.fill(c.assoc){Bool()}
val s2_tag_hit = Vec.fill(c.assoc){Bool()}
val s2_dout = Vec.fill(c.assoc){Reg(Bits())}
for (i <- 0 until c.assoc) {
val s1_vb = vb_array(Cat(UInt(i), s1_pgoff(c.untagbits-1,c.offbits))).toBool
val s2_vb = Reg(Bool())
val s2_tag_disparity = Reg(Bool())
val s2_tag_match = Reg(Bool())
val tag_out = tag_array(tag_raddr)(enc_tagbits*(i+1)-1, enc_tagbits*i)
when (s1_valid && rdy && !stall) {
s2_vb := s1_vb
s2_tag_disparity := c.code.decode(tag_out).error
s2_tag_match := s1_tag_match(i)
}
s1_tag_match(i) := tag_out(c.tagbits-1,0) === s1_tag
s2_tag_hit(i) := s2_vb && s2_tag_match
s2_disparity(i) := s2_vb && (s2_tag_disparity || c.code.decode(s2_dout(i)).error)
}
s2_any_tag_hit := s2_tag_hit.reduceLeft(_||_) && !s2_disparity.reduceLeft(_||_)
for (i <- 0 until c.assoc) {
val data_array = Mem(Bits(width = c.code.width(c.databits)), c.sets*REFILL_CYCLES, seqRead = true)
val s1_raddr = Reg(UInt())
when (io.mem.grant.valid && repl_way === UInt(i)) {
val d = io.mem.grant.bits.payload.data
data_array(Cat(s2_idx,rf_cnt)) := c.code.encode(d)
}
// /*.else*/when (s0_valid) { // uncomment ".else" to infer 6T SRAM
.elsewhen (s0_valid) {
s1_raddr := s0_pgoff(c.untagbits-1,c.offbits-rf_cnt.getWidth)
}
// if s1_tag_match is critical, replace with partial tag check
when (s1_valid && rdy && !stall && (Bool(c.dm) || s1_tag_match(i))) { s2_dout(i) := data_array(s1_raddr) }
}
val s2_dout_word = s2_dout.map(x => (x >> (s2_offset(log2Up(c.databits/8)-1,log2Up(c.ibytes)) << log2Up(c.ibytes*8)))(c.ibytes*8-1,0))
io.resp.bits.data := Mux1H(s2_tag_hit, s2_dout_word)
io.resp.bits.datablock := Mux1H(s2_tag_hit, s2_dout)
val finish_q = Module(new Queue(new GrantAck, 1))
finish_q.io.enq.valid := refill_done && tl.co.requiresAck(io.mem.grant.bits.payload)
finish_q.io.enq.bits.master_xact_id := io.mem.grant.bits.payload.master_xact_id
// output signals
io.resp.valid := s2_hit
io.mem.acquire.meta.valid := (state === s_request) && finish_q.io.enq.ready
io.mem.acquire.meta.bits.payload := Acquire(tl.co.getUncachedReadAcquireType, s2_addr >> UInt(c.offbits), UInt(0))
io.mem.acquire.data.valid := Bool(false)
io.mem.grant_ack <> FIFOedLogicalNetworkIOWrapper(finish_q.io.deq)
io.mem.grant.ready := Bool(true)
// control state machine
switch (state) {
is (s_ready) {
when (s2_miss) { state := s_request }
invalidated := Bool(false)
}
is (s_request) {
when (io.mem.acquire.meta.ready && finish_q.io.enq.ready) { state := s_refill_wait }
}
is (s_refill_wait) {
when (io.mem.grant.valid) { state := s_refill }
}
is (s_refill) {
when (refill_done) { state := s_ready }
}
}
}