1
0
rocket-chip/uncore/coherence.scala
2012-02-27 09:24:33 -08:00

375 lines
15 KiB
Scala

package rocket
import Chisel._
import Constants._
class HubMemReq extends Bundle {
val rw = Bool()
val addr = UFix(width = PADDR_BITS-OFFSET_BITS)
val tag = Bits(width = GLOBAL_XACT_ID_BITS)
// Figure out which data-in port to pull from
val data_idx = Bits(width = TILE_ID_BITS)
val is_probe_rep = Bool()
}
class TrackerAllocReq extends Bundle {
val xact_init = new TransactionInit()
val init_tile_id = Bits(width = TILE_ID_BITS)
val data_valid = Bool()
}
class MemData extends Bundle {
val data = Bits(width = MEM_DATA_BITS)
}
class TransactionInit extends Bundle {
val t_type = Bits(width = TTYPE_BITS)
val has_data = Bool()
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
val address = Bits(width = PADDR_BITS)
}
class TransactionInitData extends MemData
class TransactionAbort extends Bundle {
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
}
class ProbeRequest extends Bundle {
val p_type = Bits(width = PTYPE_BITS)
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
val address = Bits(width = PADDR_BITS)
}
class ProbeReply extends Bundle {
val p_type = Bits(width = PTYPE_BITS)
val has_data = Bool()
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class ProbeReplyData extends MemData
class TransactionReply extends Bundle {
val t_type = Bits(width = TTYPE_BITS)
val has_data = Bool()
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class TransactionReplyData extends MemData
class TransactionFinish extends Bundle {
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class ioTileLink extends Bundle {
val xact_init = (new ioDecoupled) { new TransactionInit() }.flip
val xact_init_data = (new ioDecoupled) { new TransactionInitData() }.flip
val xact_abort = (new ioDecoupled) { new TransactionAbort() }
val probe_req = (new ioDecoupled) { new ProbeRequest() }
val probe_rep = (new ioDecoupled) { new ProbeReply() }.flip
val probe_rep_data = (new ioDecoupled) { new ProbeReplyData() }.flip
val xact_rep = (new ioDecoupled) { new TransactionReply() }
val xact_rep_data = (new ioDecoupled) { new TransactionReplyData() }
val xact_finish = (new ioDecoupled) { new TransactionFinish() }.flip
}
trait CoherencePolicy {
def cpuCmdToRW( cmd: Bits): (Bool, Bool) = {
val store = (cmd === M_XWR)
val load = (cmd === M_XRD)
val amo = cmd(3).toBool
val read = load || amo || (cmd === M_PFR)
val write = store || amo || (cmd === M_PFW)
(read, write)
}
}
trait ThreeStateIncoherence extends CoherencePolicy {
val tileInvalid :: tileClean :: tileDirty :: Nil = Enum(3){ UFix() }
def isHit ( cmd: Bits, state: UFix): Bool = {
val (read, write) = cpuCmdToRW(cmd)
( state === tileClean || state === tileDirty)
}
def isValid (state: UFix): Bool = {
state != tileInvalid
}
def needsWriteback (state: UFix): Bool = {
state === tileDirty
}
def newStateOnWriteback() = tileInvalid
def newStateOnFlush() = tileInvalid
def newState(cmd: Bits, state: UFix): UFix = {
val (read, write) = cpuCmdToRW(cmd)
Mux(write, tileDirty, Mux(read, Mux(state === tileDirty, tileDirty, tileClean), state))
}
def newStateOnHit(cmd: Bits, state: UFix): UFix = newState(cmd, state)
def newStateOnPrimaryMiss(cmd: Bits): UFix = newState(cmd, tileInvalid)
def newStateOnSecondaryMiss(cmd: Bits, state: UFix): UFix = {
val (read, write) = cpuCmdToRW(cmd)
Mux(write, tileDirty, state)
}
}
trait FourStateCoherence extends CoherencePolicy {
val tileInvalid :: tileShared :: tileExclusiveClean :: tileExclusiveDirty :: Nil = Enum(4){ UFix() }
val globalInvalid :: globalShared :: globalExclusiveClean :: Nil = Enum(3){ UFix() }
val probeInvalidate :: probeDowngrade :: probeCopy :: Nil = Enum(3){ UFix() }
def isHit ( cmd: Bits, state: UFix): Bool = {
val (read, write) = cpuCmdToRW(cmd)
((read && ( state === tileShared || state === tileExclusiveClean || state === tileExclusiveDirty)) ||
(write && (state === tileExclusiveClean || state === tileExclusiveDirty)))
}
def isValid (state: UFix): Bool = {
state != tileInvalid
}
def needsWriteback (state: UFix): Bool = {
state === tileExclusiveDirty
}
def newStateOnWriteback() = tileInvalid
def newStateOnFlush() = tileInvalid
// TODO: New funcs as compared to incoherent protocol:
def newState(cmd: Bits, state: UFix): UFix
def newStateOnHit(cmd: Bits, state: UFix): UFix
def newStateOnPrimaryMiss(cmd: Bits): UFix
def newStateOnSecondaryMiss(cmd: Bits, state: UFix): UFix
def needsSecondaryXact (cmd: Bits, outstanding: TransactionInit): Bool
def getMetaUpdateOnProbe (incoming: ProbeRequest): Bits = {
val state = UFix(0)
switch(incoming.p_type) {
is(probeInvalidate) { state := tileInvalid }
is(probeDowngrade) { state := tileShared }
}
state.toBits
}
}
class XactTracker(id: Int) extends Component {
val io = new Bundle {
val mem_req = (new ioDecoupled) { new HubMemReq() }.flip
val alloc_req = (new ioDecoupled) { new TrackerAllocReq() }
val probe_req = (new ioDecoupled) { new ProbeRequest() }.flip
val can_alloc = Bool(INPUT)
val xact_finish = Bool(INPUT)
val p_rep_has_data = Bool(INPUT)
val x_init_has_data = Bool(INPUT)
val p_rep_data_idx = Bits(log2up(NTILES), INPUT)
val x_init_data_idx = Bits(log2up(NTILES), INPUT)
val rep_cnt_dec = Bits(NTILES, INPUT)
val busy = Bool(OUTPUT)
val addr = Bits(PADDR_BITS, OUTPUT)
val init_tile_id = Bits(TILE_ID_BITS, OUTPUT)
val tile_xact_id = Bits(TILE_XACT_ID_BITS, OUTPUT)
val sharer_count = Bits(TILE_ID_BITS, OUTPUT)
val t_type = Bits(TTYPE_BITS, OUTPUT)
val push_p_req = Bits(NTILES, OUTPUT)
val pop_p_rep = Bits(NTILES, OUTPUT)
val pop_p_rep_data = Bits(NTILES, OUTPUT)
val pop_x_init = Bool(OUTPUT)
val pop_x_init_data = Bool(OUTPUT)
val send_x_rep_ack = Bool(OUTPUT)
}
val valid = Reg(resetVal = Bool(false))
val addr = Reg{ Bits() }
val t_type = Reg{ Bits() }
val init_tile_id = Reg{ Bits() }
val tile_xact_id = Reg{ Bits() }
val probe_done = Reg{ Bits() }
//TODO: Decrement the probe count when final data piece is written
// Connent io.mem.ready sig to correct pop* outputs
// P_rep and x_init must be popped on same cycle of receipt
}
abstract class CoherenceHub extends Component
class CoherenceHubNoDir extends CoherenceHub {
def coherenceConflict(addr1: Bits, addr2: Bits): Bool = {
addr1(PADDR_BITS-1, OFFSET_BITS) === addr2(PADDR_BITS-1, OFFSET_BITS)
}
def getTransactionReplyType(t_type: UFix, count: UFix): Bits = {
val ret = Wire() { Bits(width = TTYPE_BITS) }
switch (t_type) {
is(X_READ_SHARED) { ret := Mux(count > UFix(0), X_READ_SHARED, X_READ_EXCLUSIVE) }
is(X_READ_EXCLUSIVE) { ret := X_READ_EXCLUSIVE }
is(X_READ_UNCACHED) { ret := X_READ_UNCACHED }
is(X_WRITE_UNCACHED) { ret := X_WRITE_UNCACHED }
}
ret
}
val io = new Bundle {
val tiles = Vec(NTILES) { new ioTileLink() }
val mem = new ioDCache().flip
}
val trackerList = (0 until NGLOBAL_XACTS).map(new XactTracker(_))
val busy_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
val addr_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=PADDR_BITS)} }
val init_tile_id_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_ID_BITS)} }
val tile_xact_id_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_XACT_ID_BITS)} }
val t_type_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TTYPE_BITS)} }
val sh_count_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_ID_BITS)} }
val send_x_rep_ack_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
val do_free_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
val p_rep_has_data_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
val p_rep_data_idx_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=log2up(NTILES))} }
val rep_cnt_dec_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=NTILES)} }
for( i <- 0 until NGLOBAL_XACTS) {
busy_arr.write( UFix(i), trackerList(i).io.busy)
addr_arr.write( UFix(i), trackerList(i).io.addr)
init_tile_id_arr.write( UFix(i), trackerList(i).io.init_tile_id)
tile_xact_id_arr.write( UFix(i), trackerList(i).io.tile_xact_id)
t_type_arr.write( UFix(i), trackerList(i).io.t_type)
sh_count_arr.write( UFix(i), trackerList(i).io.sharer_count)
send_x_rep_ack_arr.write( UFix(i), trackerList(i).io.send_x_rep_ack)
trackerList(i).io.xact_finish := do_free_arr.read(UFix(i))
trackerList(i).io.p_rep_has_data := p_rep_has_data_arr.read(UFix(i))
trackerList(i).io.p_rep_data_idx := p_rep_data_idx_arr.read(UFix(i))
trackerList(i).io.rep_cnt_dec := rep_cnt_dec_arr.read(UFix(i))
}
// Free finished transactions
for( j <- 0 until NTILES ) {
val finish = io.tiles(j).xact_finish
do_free_arr.write(finish.bits.global_xact_id, finish.valid)
finish.ready := Bool(true)
}
// Reply to initial requestor
// Forward memory responses from mem to tile
val xrep_cnt = Reg(resetVal = UFix(0, log2up(REFILL_CYCLES)))
val xrep_cnt_next = xrep_cnt + UFix(1)
when (io.mem.resp_val) { xrep_cnt := xrep_cnt_next }
val idx = io.mem.resp_tag
val readys = Bits(width = NTILES)
for( j <- 0 until NTILES ) {
io.tiles(j).xact_rep.bits.t_type := getTransactionReplyType(t_type_arr.read(idx), sh_count_arr.read(idx))
io.tiles(j).xact_rep.bits.tile_xact_id := tile_xact_id_arr.read(idx)
io.tiles(j).xact_rep.bits.global_xact_id := idx
io.tiles(j).xact_rep_data.bits.data := io.mem.resp_data
readys := Mux(xrep_cnt === UFix(0), io.tiles(j).xact_rep.ready && io.tiles(j).xact_rep_data.ready, io.tiles(j).xact_rep_data.ready)
io.tiles(j).xact_rep.valid := (UFix(j) === init_tile_id_arr.read(idx)) && ((io.mem.resp_val && xrep_cnt === UFix(0)) || send_x_rep_ack_arr.read(idx))
io.tiles(j).xact_rep_data.valid := (UFix(j) === init_tile_id_arr.read(idx))
}
// If there were a ready signal due to e.g. intervening network use:
//io.mem.resp_rdy := readys(init_tile_id_arr.read(idx)).xact_rep.ready
// Create an arbiter for the one memory port
// We have to arbitrate between the different trackers' memory requests
// and once we have picked a request, get the right write data
val mem_req_arb = (new Arbiter(NGLOBAL_XACTS)) { new HubMemReq() }
for( i <- 0 until NGLOBAL_XACTS ) {
mem_req_arb.io.in(i) <> trackerList(i).io.mem_req
}
mem_req_arb.io.out.ready := io.mem.req_rdy
io.mem.req_val := mem_req_arb.io.out.valid
io.mem.req_rw := mem_req_arb.io.out.bits.rw
io.mem.req_tag := mem_req_arb.io.out.bits.tag
io.mem.req_addr := mem_req_arb.io.out.bits.addr
io.mem.req_wdata := MuxLookup(mem_req_arb.io.out.bits.data_idx,
Bits(0, width = MEM_DATA_BITS),
(0 until NTILES).map( j =>
UFix(j) -> Mux(mem_req_arb.io.out.bits.is_probe_rep,
io.tiles(j).probe_rep_data.bits.data,
io.tiles(j).xact_init_data.bits.data)))
// Handle probe replies, which may or may not have data
for( j <- 0 until NTILES ) {
val p_rep = io.tiles(j).probe_rep
val p_rep_data = io.tiles(j).probe_rep_data
val idx = p_rep.bits.global_xact_id
p_rep_has_data_arr.write(idx, p_rep.valid && p_rep.bits.has_data && p_rep_data.valid)
p_rep_data_idx_arr.write(idx, UFix(j))
p_rep.ready := foldR(trackerList.map(_.io.pop_p_rep(j)))(_ || _)
p_rep_data.ready := foldR(trackerList.map(_.io.pop_p_rep_data(j)))(_ || _)
}
for( i <- 0 until NGLOBAL_XACTS ) {
val flags = Bits(width = NTILES)
for( j <- 0 until NTILES) {
val p_rep = io.tiles(j).probe_rep
flags(j) := p_rep.valid && !p_rep.bits.has_data && (p_rep.bits.global_xact_id === UFix(i))
}
rep_cnt_dec_arr.write(UFix(i), flags)
}
// Nack conflicting transaction init attempts
val aborting = Wire() { Bits(width = NTILES) }
for( j <- 0 until NTILES ) {
val x_init = io.tiles(j).xact_init
val x_abort = io.tiles(j).xact_abort
val conflicts = Bits(width = NGLOBAL_XACTS)
for( i <- 0 until NGLOBAL_XACTS) {
val t = trackerList(i).io
conflicts(i) := t.busy(i) && coherenceConflict(t.addr, x_init.bits.address) &&
!(x_init.bits.has_data && (UFix(j) === t.init_tile_id))
// Don't abort writebacks stalled on mem.
// TODO: This assumes overlapped writeback init reqs to
// the same addr will never be issued; is this ok?
}
x_abort.bits.tile_xact_id := x_init.bits.tile_xact_id
val want_to_abort = conflicts.orR || busy_arr.flatten().andR
x_abort.valid := want_to_abort && x_init.valid
aborting(j) := want_to_abort && x_abort.ready
}
// Handle transaction initiation requests
// Only one allocation per cycle
// Init requests may or may not have data
val alloc_arb = (new Arbiter(NGLOBAL_XACTS)) { Bool() }
val init_arb = (new Arbiter(NTILES)) { new TrackerAllocReq() }
for( i <- 0 until NGLOBAL_XACTS ) {
alloc_arb.io.in(i).valid := !trackerList(i).io.busy
trackerList(i).io.can_alloc := alloc_arb.io.in(i).ready
trackerList(i).io.alloc_req.bits := init_arb.io.out.bits
trackerList(i).io.alloc_req.valid := init_arb.io.out.valid
}
for( j <- 0 until NTILES ) {
val x_init = io.tiles(j).xact_init
val x_init_data = io.tiles(j).xact_init_data
init_arb.io.in(j).valid := x_init.valid
init_arb.io.in(j).bits.xact_init := x_init.bits
init_arb.io.in(j).bits.init_tile_id := UFix(j)
init_arb.io.in(j).bits.data_valid := x_init_data.valid
x_init.ready := aborting(j) || foldR(trackerList.map(_.io.pop_x_init && init_arb.io.out.bits.init_tile_id === UFix(j)))(_||_)
x_init_data.ready := aborting(j) || foldR(trackerList.map(_.io.pop_x_init_data && init_arb.io.out.bits.init_tile_id === UFix(j)))(_||_)
}
alloc_arb.io.out.ready := init_arb.io.out.valid && !busy_arr.flatten().andR &&
!foldR(trackerList.map(t => t.io.busy && coherenceConflict(t.io.addr, init_arb.io.out.bits.xact_init.address)))(_||_)
// Handle probe request generation
// Must arbitrate for each request port
for( j <- 0 until NTILES ) {
val p_req_arb = (new Arbiter(NGLOBAL_XACTS)) { new ProbeRequest() }
for( i <- 0 until NGLOBAL_XACTS ) {
val t = trackerList(i).io
p_req_arb.io.in(i).bits := t.probe_req.bits
p_req_arb.io.in(i).ready := t.probe_req.ready
p_req_arb.io.in(i).valid := t.probe_req.valid && t.push_p_req(j)
}
p_req_arb.io.out <> io.tiles(j).probe_req
}
}