Refactor package hierarchy and remove legacy bus protocol implementations (#845)
* Refactors package hierarchy. Additionally: - Removes legacy ground tests and configs - Removes legacy bus protocol implementations - Removes NTiles - Adds devices package - Adds more functions to util package
This commit is contained in:
233
src/main/scala/devices/tilelink/Plic.scala
Normal file
233
src/main/scala/devices/tilelink/Plic.scala
Normal file
@ -0,0 +1,233 @@
|
||||
// See LICENSE.SiFive for license details.
|
||||
|
||||
package freechips.rocketchip.devices.tilelink
|
||||
|
||||
import Chisel._
|
||||
import Chisel.ImplicitConversions._
|
||||
import freechips.rocketchip.config.Parameters
|
||||
import freechips.rocketchip.diplomacy._
|
||||
import freechips.rocketchip.regmapper._
|
||||
import freechips.rocketchip.tile.XLen
|
||||
import freechips.rocketchip.tilelink._
|
||||
import freechips.rocketchip.util._
|
||||
import scala.math.min
|
||||
|
||||
class GatewayPLICIO extends Bundle {
|
||||
val valid = Bool(OUTPUT)
|
||||
val ready = Bool(INPUT)
|
||||
val complete = Bool(INPUT)
|
||||
}
|
||||
|
||||
class LevelGateway extends Module {
|
||||
val io = new Bundle {
|
||||
val interrupt = Bool(INPUT)
|
||||
val plic = new GatewayPLICIO
|
||||
}
|
||||
|
||||
val inFlight = Reg(init=Bool(false))
|
||||
when (io.interrupt && io.plic.ready) { inFlight := true }
|
||||
when (io.plic.complete) { inFlight := false }
|
||||
io.plic.valid := io.interrupt && !inFlight
|
||||
}
|
||||
|
||||
object PLICConsts
|
||||
{
|
||||
def maxDevices = 1023
|
||||
def maxHarts = 15872
|
||||
def priorityBase = 0x0
|
||||
def pendingBase = 0x1000
|
||||
def enableBase = 0x2000
|
||||
def hartBase = 0x200000
|
||||
|
||||
def claimOffset = 4
|
||||
def priorityBytes = 4
|
||||
|
||||
def enableOffset(i: Int) = i * ((maxDevices+7)/8)
|
||||
def hartOffset(i: Int) = i * 0x1000
|
||||
def enableBase(i: Int):Int = enableOffset(i) + enableBase
|
||||
def hartBase(i: Int):Int = hartOffset(i) + hartBase
|
||||
|
||||
def size = hartBase(maxHarts)
|
||||
require(hartBase >= enableBase(maxHarts))
|
||||
}
|
||||
|
||||
case class PLICParams(baseAddress: BigInt = 0xC000000, maxPriorities: Int = 7)
|
||||
{
|
||||
require (maxPriorities >= 0)
|
||||
def address = AddressSet(baseAddress, PLICConsts.size-1)
|
||||
}
|
||||
|
||||
/** Platform-Level Interrupt Controller */
|
||||
class TLPLIC(params: PLICParams)(implicit p: Parameters) extends LazyModule
|
||||
{
|
||||
// plic0 => max devices 1023
|
||||
val device = new SimpleDevice("interrupt-controller", Seq("riscv,plic0")) {
|
||||
override val alwaysExtended = true
|
||||
override def describe(resources: ResourceBindings): Description = {
|
||||
val Description(name, mapping) = super.describe(resources)
|
||||
val extra = Map(
|
||||
"interrupt-controller" -> Nil,
|
||||
"riscv,ndev" -> Seq(ResourceInt(nDevices)),
|
||||
"#interrupt-cells" -> Seq(ResourceInt(1)))
|
||||
Description(name, mapping ++ extra)
|
||||
}
|
||||
}
|
||||
|
||||
val node = TLRegisterNode(
|
||||
address = Seq(params.address),
|
||||
device = device,
|
||||
beatBytes = p(XLen)/8,
|
||||
undefZero = true,
|
||||
concurrency = 1) // limiting concurrency handles RAW hazards on claim registers
|
||||
|
||||
val intnode = IntNexusNode(
|
||||
numSourcePorts = 0 to 1024,
|
||||
numSinkPorts = 0 to 1024,
|
||||
sourceFn = { _ => IntSourcePortParameters(Seq(IntSourceParameters(1, Seq(Resource(device, "int"))))) },
|
||||
sinkFn = { _ => IntSinkPortParameters(Seq(IntSinkParameters())) })
|
||||
|
||||
/* Negotiated sizes */
|
||||
def nDevices: Int = intnode.edgesIn.map(_.source.num).sum
|
||||
def nPriorities = min(params.maxPriorities, nDevices)
|
||||
def nHarts = intnode.edgesOut.map(_.source.num).sum
|
||||
|
||||
// Assign all the devices unique ranges
|
||||
lazy val sources = intnode.edgesIn.map(_.source)
|
||||
lazy val flatSources = (sources zip sources.map(_.num).scanLeft(0)(_+_).init).map {
|
||||
case (s, o) => s.sources.map(z => z.copy(range = z.range.offset(o)))
|
||||
}.flatten
|
||||
|
||||
ResourceBinding {
|
||||
flatSources.foreach { s => s.resources.foreach { r =>
|
||||
// +1 because interrupt 0 is reserved
|
||||
(s.range.start until s.range.end).foreach { i => r.bind(device, ResourceInt(i+1)) }
|
||||
} }
|
||||
}
|
||||
|
||||
lazy val module = new LazyModuleImp(this) {
|
||||
val io = new Bundle {
|
||||
val tl_in = node.bundleIn
|
||||
val devices = intnode.bundleIn
|
||||
val harts = intnode.bundleOut
|
||||
}
|
||||
|
||||
// Compact the interrupt vector the same way
|
||||
val interrupts = (intnode.edgesIn zip io.devices).map { case (e, i) => i.take(e.source.num) }.flatten
|
||||
// This flattens the harts into an MSMSMSMSMS... or MMMMM.... sequence
|
||||
val harts = io.harts.flatten
|
||||
|
||||
println(s"Interrupt map (${nHarts} harts ${nDevices} interrupts):")
|
||||
flatSources.foreach { s =>
|
||||
// +1 because 0 is reserved, +1-1 because the range is half-open
|
||||
println(s" [${s.range.start+1}, ${s.range.end}] => ${s.name}")
|
||||
}
|
||||
println("")
|
||||
|
||||
require (nDevices == interrupts.size)
|
||||
require (nHarts == harts.size)
|
||||
|
||||
require(nDevices <= PLICConsts.maxDevices)
|
||||
require(nHarts > 0 && nHarts <= PLICConsts.maxHarts)
|
||||
|
||||
// For now, use LevelGateways for all TL2 interrupts
|
||||
val gateways = Vec((false.B +: interrupts).map { case i =>
|
||||
val gateway = Module(new LevelGateway)
|
||||
gateway.io.interrupt := i
|
||||
gateway.io.plic
|
||||
})
|
||||
|
||||
val priority =
|
||||
if (nPriorities > 0) Reg(Vec(nDevices+1, UInt(width=log2Up(nPriorities+1))))
|
||||
else Wire(init=Vec.fill(nDevices+1)(UInt(1)))
|
||||
val threshold =
|
||||
if (nPriorities > 0) Reg(Vec(nHarts, UInt(width = log2Up(nPriorities+1))))
|
||||
else Wire(init=Vec.fill(nHarts)(UInt(0)))
|
||||
val pending = Reg(init=Vec.fill(nDevices+1){Bool(false)})
|
||||
val enables = Reg(Vec(nHarts, Vec(nDevices+1, Bool())))
|
||||
|
||||
def findMax(x: Seq[UInt]): (UInt, UInt) = {
|
||||
if (x.length > 1) {
|
||||
val half = 1 << (log2Ceil(x.length) - 1)
|
||||
val left = findMax(x take half)
|
||||
val right = findMax(x drop half)
|
||||
MuxT(left._1 >= right._1, left, (right._1, UInt(half) | right._2))
|
||||
} else (x.head, UInt(0))
|
||||
}
|
||||
|
||||
val maxDevs = Reg(Vec(nHarts, UInt(width = log2Up(pending.size))))
|
||||
for (hart <- 0 until nHarts) {
|
||||
val effectivePriority = (UInt(1) << priority(0).getWidth) +:
|
||||
(for (((p, en), pri) <- (pending zip enables(hart) zip priority).tail)
|
||||
yield Cat(p && en, pri))
|
||||
val (maxPri, maxDev) = findMax(effectivePriority)
|
||||
|
||||
maxDevs(hart) := maxDev
|
||||
harts(hart) := Reg(next = maxPri) > Cat(UInt(1), threshold(hart))
|
||||
}
|
||||
|
||||
def priorityRegField(x: UInt) = if (nPriorities > 0) RegField(32, x) else RegField.r(32, x)
|
||||
val priorityRegFields = Seq(PLICConsts.priorityBase -> priority.map(p => priorityRegField(p)))
|
||||
val pendingRegFields = Seq(PLICConsts.pendingBase -> pending .map(b => RegField.r(1, b)))
|
||||
|
||||
val enableRegFields = enables.zipWithIndex.map { case (e, i) =>
|
||||
PLICConsts.enableBase(i) -> e.map(b => RegField(1, b))
|
||||
}
|
||||
|
||||
// When a hart reads a claim/complete register, then the
|
||||
// device which is currently its highest priority is no longer pending.
|
||||
// This code exploits the fact that, practically, only one claim/complete
|
||||
// register can be read at a time. We check for this because if the address map
|
||||
// were to change, it may no longer be true.
|
||||
// Note: PLIC doesn't care which hart reads the register.
|
||||
val claimer = Wire(Vec(nHarts, Bool()))
|
||||
assert((claimer.asUInt & (claimer.asUInt - UInt(1))) === UInt(0)) // One-Hot
|
||||
val claiming = Vec.tabulate(nHarts){i => Mux(claimer(i), UIntToOH(maxDevs(i), nDevices+1), UInt(0))}
|
||||
val claimedDevs = Vec(claiming.reduceLeft( _ | _ ).toBools)
|
||||
|
||||
((pending zip gateways) zip claimedDevs) foreach { case ((p, g), c) =>
|
||||
g.ready := !p
|
||||
when (c || g.valid) { p := !c }
|
||||
}
|
||||
|
||||
// When a hart writes a claim/complete register, then
|
||||
// the written device (as long as it is actually enabled for that
|
||||
// hart) is marked complete.
|
||||
// This code exploits the fact that, practically, only one claim/complete register
|
||||
// can be written at a time. We check for this because if the address map
|
||||
// were to change, it may no longer be true.
|
||||
// Note -- PLIC doesn't care which hart writes the register.
|
||||
val completer = Wire(Vec(nHarts, Bool()))
|
||||
assert((completer.asUInt & (completer.asUInt - UInt(1))) === UInt(0)) // One-Hot
|
||||
val completerDev = Wire(UInt(width = log2Up(nDevices + 1)))
|
||||
val completedDevs = Mux(completer.reduce(_ || _), UIntToOH(completerDev, nDevices+1), UInt(0))
|
||||
(gateways zip completedDevs.toBools) foreach { case (g, c) =>
|
||||
g.complete := c
|
||||
}
|
||||
|
||||
val hartRegFields = Seq.tabulate(nHarts) { i =>
|
||||
PLICConsts.hartBase(i) -> Seq(
|
||||
priorityRegField(threshold(i)),
|
||||
RegField(32,
|
||||
RegReadFn { valid =>
|
||||
claimer(i) := valid
|
||||
(Bool(true), maxDevs(i))
|
||||
},
|
||||
RegWriteFn { (valid, data) =>
|
||||
assert(completerDev === data.extract(log2Ceil(nDevices+1)-1, 0),
|
||||
"completerDev should be consistent for all harts")
|
||||
completerDev := data.extract(log2Ceil(nDevices+1)-1, 0)
|
||||
completer(i) := valid && enables(i)(completerDev)
|
||||
Bool(true)
|
||||
}
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
node.regmap((priorityRegFields ++ pendingRegFields ++ enableRegFields ++ hartRegFields):_*)
|
||||
|
||||
priority(0) := 0
|
||||
pending(0) := false
|
||||
for (e <- enables)
|
||||
e(0) := false
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user