1
0
rocket-chip/src/main/scala/uncore/tilelink2/Fragmenter.scala

315 lines
14 KiB
Scala
Raw Normal View History

// See LICENSE.SiFive for license details.
package uncore.tilelink2
import Chisel._
import chisel3.internal.sourceinfo.SourceInfo
import config._
import diplomacy._
import scala.math.{min,max}
// minSize: minimum size of transfers supported by all outward managers
// maxSize: maximum size of transfers supported after the Fragmenter is applied
// alwaysMin: fragment all requests down to minSize (else fragment to maximum supported by manager)
// Fragmenter modifies: PutFull, PutPartial, LogicalData, Get, Hint
// Fragmenter passes: ArithmeticData (truncated to minSize if alwaysMin)
// Fragmenter cannot modify acquire (could livelock); thus it is unsafe to put caches on both sides
class TLFragmenter(val minSize: Int, val maxSize: Int, val alwaysMin: Boolean = false, val earlyAck: Boolean = false)(implicit p: Parameters) extends LazyModule
{
require (isPow2 (maxSize))
require (isPow2 (minSize))
require (minSize < maxSize)
// EarlyAck means that 1.999 transactions can be inflight at a time
// Thus, we need an extra toggle bit to prevent source collisions
val fragmentBits = log2Ceil(maxSize / minSize)
val toggleBits = if (earlyAck) 1 else 0
val addedBits = fragmentBits + toggleBits
def expandTransfer(x: TransferSizes) = if (!x) x else {
require (x.max >= minSize) // validate that we can apply the fragmenter correctly
TransferSizes(x.min, maxSize)
}
def shrinkTransfer(x: TransferSizes) =
if (!alwaysMin) x else
if (x.min <= minSize) TransferSizes(x.min, min(minSize, x.max)) else
TransferSizes.none
def mapManager(m: TLManagerParameters) = m.copy(
supportsArithmetic = shrinkTransfer(m.supportsArithmetic),
supportsLogical = shrinkTransfer(m.supportsLogical),
supportsGet = expandTransfer(m.supportsGet),
supportsPutFull = expandTransfer(m.supportsPutFull),
2016-09-13 02:31:59 +02:00
supportsPutPartial = expandTransfer(m.supportsPutPartial),
supportsHint = expandTransfer(m.supportsHint))
val node = TLAdapterNode(
// We require that all the responses are mutually FIFO
// Thus we need to compact all of the masters into one big master
clientFn = { c => c.copy(clients = Seq(TLClientParameters(
sourceId = IdRange(0, c.endSourceId << addedBits),
requestFifo = true))) },
managerFn = { m => m.copy(managers = m.managers.map(mapManager)) })
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val in = node.bundleIn
val out = node.bundleOut
}
((io.in zip io.out) zip (node.edgesIn zip node.edgesOut)) foreach { case ((in, out), (edgeIn, edgeOut)) =>
// All managers must share a common FIFO domain (responses might end up interleaved)
val manager = edgeOut.manager
val managers = manager.managers
val beatBytes = manager.beatBytes
val fifoId = managers(0).fifoId
require (fifoId.isDefined && managers.map(_.fifoId == fifoId).reduce(_ && _))
require (manager.endSinkId <= 1)
// We don't support fragmenting to sub-beat accesses
require (minSize >= beatBytes)
// We can't support devices which are cached on both sides of us
require (!edgeOut.manager.anySupportAcquireB || !edgeIn.client.anySupportProbe)
/* The Fragmenter is a bit tricky, because there are 5 sizes in play:
* max size -- the maximum transfer size possible
* orig size -- the original pre-fragmenter size
* frag size -- the modified post-fragmenter size
* min size -- the threshold below which frag=orig
* beat size -- the amount transfered on any given beat
*
* The relationships are as follows:
* max >= orig >= frag
* max > min >= beat
* It IS possible that orig <= min (then frag=orig; ie: no fragmentation)
*
* The fragment# (sent via TL.source) is measured in multiples of min size.
* Meanwhile, to track the progress, counters measure in multiples of beat size.
*
* Here is an example of a bus with max=256, min=8, beat=4 and a device supporting 16.
*
* in.A out.A (frag#) out.D (frag#) in.D gen# ack#
* get64 get16 6 ackD16 6 ackD64 12 15
* ackD16 6 ackD64 14
* ackD16 6 ackD64 13
* ackD16 6 ackD64 12
* get16 4 ackD16 4 ackD64 8 11
* ackD16 4 ackD64 10
* ackD16 4 ackD64 9
* ackD16 4 ackD64 8
* get16 2 ackD16 2 ackD64 4 7
* ackD16 2 ackD64 6
* ackD16 2 ackD64 5
* ackD16 2 ackD64 4
* get16 0 ackD16 0 ackD64 0 3
* ackD16 0 ackD64 2
* ackD16 0 ackD64 1
* ackD16 0 ackD64 0
*
* get8 get8 0 ackD8 0 ackD8 0 1
* ackD8 0 ackD8 0
*
* get4 get4 0 ackD4 0 ackD4 0 0
* get1 get1 0 ackD1 0 ackD1 0 0
*
* put64 put16 6 15
* put64 put16 6 14
* put64 put16 6 13
* put64 put16 6 ack16 6 12 12
* put64 put16 4 11
* put64 put16 4 10
* put64 put16 4 9
* put64 put16 4 ack16 4 8 8
* put64 put16 2 7
* put64 put16 2 6
* put64 put16 2 5
* put64 put16 2 ack16 2 4 4
* put64 put16 0 3
* put64 put16 0 2
* put64 put16 0 1
* put64 put16 0 ack16 0 ack64 0 0
*
* put8 put8 0 1
* put8 put8 0 ack8 0 ack8 0 0
*
* put4 put4 0 ack4 0 ack4 0 0
* put1 put1 0 ack1 0 ack1 0 0
*/
val counterBits = log2Up(maxSize/beatBytes)
val maxDownSize = if (alwaysMin) minSize else min(manager.maxTransfer, maxSize)
// First, handle the return path
val acknum = RegInit(UInt(0, width = counterBits))
val dOrig = Reg(UInt())
val dFragnum = out.d.bits.source(fragmentBits-1, 0)
val dFirst = acknum === UInt(0)
val dLast = dFragnum === UInt(0)
val dsizeOH = UIntToOH (out.d.bits.size, log2Ceil(maxDownSize)+1)
val dsizeOH1 = UIntToOH1(out.d.bits.size, log2Up(maxDownSize))
val dHasData = edgeOut.hasData(out.d.bits)
// calculate new acknum
val acknum_fragment = dFragnum << log2Ceil(minSize/beatBytes)
val acknum_size = dsizeOH1 >> log2Ceil(beatBytes)
assert (!out.d.valid || (acknum_fragment & acknum_size) === UInt(0))
val dFirst_acknum = acknum_fragment | Mux(dHasData, acknum_size, UInt(0))
val ack_decrement = Mux(dHasData, UInt(1), dsizeOH >> log2Ceil(beatBytes))
// calculate the original size
val dFirst_size = OH1ToUInt((dFragnum << log2Ceil(minSize)) | dsizeOH1)
when (out.d.fire()) {
acknum := Mux(dFirst, dFirst_acknum, acknum - ack_decrement)
when (dFirst) { dOrig := dFirst_size }
}
// Swallow up non-data ack fragments
val drop = !dHasData && !(if (earlyAck) dFirst else dLast)
out.d.ready := in.d.ready || drop
in.d.valid := out.d.valid && !drop
in.d.bits := out.d.bits // pass most stuff unchanged
in.d.bits.addr_lo := out.d.bits.addr_lo & ~dsizeOH1
in.d.bits.source := out.d.bits.source >> addedBits
in.d.bits.size := Mux(dFirst, dFirst_size, dOrig)
if (earlyAck) {
// If you do early Ack, errors may not be dropped
// ... which roughly means: Puts may not fail
assert (!out.d.valid || !out.d.bits.error || !drop)
in.d.bits.error := out.d.bits.error
} else {
// Combine the error flag
val r_error = RegInit(Bool(false))
val d_error = r_error | out.d.bits.error
when (out.d.fire()) { r_error := Mux(drop, d_error, UInt(0)) }
in.d.bits.error := d_error
}
// What maximum transfer sizes do downstream devices support?
val maxArithmetics = managers.map(_.supportsArithmetic.max)
val maxLogicals = managers.map(_.supportsLogical.max)
val maxGets = managers.map(_.supportsGet.max)
val maxPutFulls = managers.map(_.supportsPutFull.max)
val maxPutPartials = managers.map(_.supportsPutPartial.max)
val maxHints = managers.map(m => if (m.supportsHint) maxDownSize else 0)
// We assume that the request is valid => size 0 is impossible
val lgMinSize = UInt(log2Ceil(minSize))
val maxLgArithmetics = maxArithmetics.map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
val maxLgLogicals = maxLogicals .map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
val maxLgGets = maxGets .map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
val maxLgPutFulls = maxPutFulls .map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
val maxLgPutPartials = maxPutPartials.map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
val maxLgHints = maxHints .map(m => if (m == 0) lgMinSize else UInt(log2Ceil(m)))
// Make the request repeatable
val repeater = Module(new Repeater(in.a.bits))
repeater.io.enq <> in.a
val in_a = repeater.io.deq
// If this is infront of a single manager, these become constants
val find = manager.findFast(edgeIn.address(in_a.bits))
val maxLgArithmetic = Mux1H(find, maxLgArithmetics)
val maxLgLogical = Mux1H(find, maxLgLogicals)
val maxLgGet = Mux1H(find, maxLgGets)
val maxLgPutFull = Mux1H(find, maxLgPutFulls)
val maxLgPutPartial = Mux1H(find, maxLgPutPartials)
val maxLgHint = Mux1H(find, maxLgHints)
val limit = if (alwaysMin) lgMinSize else
MuxLookup(in_a.bits.opcode, lgMinSize, Array(
TLMessages.PutFullData -> maxLgPutFull,
TLMessages.PutPartialData -> maxLgPutPartial,
TLMessages.ArithmeticData -> maxLgArithmetic,
TLMessages.LogicalData -> maxLgLogical,
TLMessages.Get -> maxLgGet,
TLMessages.Hint -> maxLgHint))
val aOrig = in_a.bits.size
val aFrag = Mux(aOrig > limit, limit, aOrig)
val aOrigOH1 = UIntToOH1(aOrig, log2Ceil(maxSize))
val aFragOH1 = UIntToOH1(aFrag, log2Up(maxDownSize))
val aHasData = node.edgesIn(0).hasData(in_a.bits)
val aMask = Mux(aHasData, UInt(0), aFragOH1)
val gennum = RegInit(UInt(0, width = counterBits))
val aFirst = gennum === UInt(0)
val old_gennum1 = Mux(aFirst, aOrigOH1 >> log2Ceil(beatBytes), gennum - UInt(1))
val new_gennum = ~(~old_gennum1 | (aMask >> log2Ceil(beatBytes))) // ~(~x|y) is width safe
val aFragnum = ~(~(old_gennum1 >> log2Ceil(minSize/beatBytes)) | (aFragOH1 >> log2Ceil(minSize)))
val aLast = aFragnum === UInt(0)
when (out.a.fire()) { gennum := new_gennum }
// We need to alternate bits by source to handle the 1.999 txns inflight per Id
val toggleBitOpt = if (!earlyAck) None else {
val state = Reg(UInt(width = edgeIn.client.endSourceId))
val toggle = Wire(init = UInt(0, width = edgeIn.client.endSourceId))
when (in_a.fire() && aLast) { toggle := UIntToOH(in_a.bits.source) }
state := state ^ toggle
Some(state(in_a.bits.source))
}
repeater.io.repeat := !aHasData && aFragnum =/= UInt(0)
out.a <> in_a
out.a.bits.address := in_a.bits.address | ~(old_gennum1 << log2Ceil(beatBytes) | ~aOrigOH1 | aFragOH1 | UInt(minSize-1))
out.a.bits.source := Cat(Seq(in_a.bits.source) ++ toggleBitOpt.toList ++ Seq(aFragnum))
out.a.bits.size := aFrag
// Optimize away some of the Repeater's registers
assert (!repeater.io.full || !aHasData)
out.a.bits.data := in.a.bits.data
val fullMask = UInt((BigInt(1) << beatBytes) - 1)
assert (!repeater.io.full || in_a.bits.mask === fullMask)
out.a.bits.mask := Mux(repeater.io.full, fullMask, in.a.bits.mask)
// Tie off unused channels
in.b.valid := Bool(false)
in.c.ready := Bool(true)
in.e.ready := Bool(true)
out.b.ready := Bool(true)
out.c.valid := Bool(false)
out.e.valid := Bool(false)
}
}
}
object TLFragmenter
{
// applied to the TL source node; y.node := TLFragmenter(x.node, 256, 4)
def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false, earlyAck: Boolean = false)(x: TLOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): TLOutwardNode = {
val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin, earlyAck))
fragmenter.node := x
fragmenter.node
}
}
/** Synthesizeable unit tests */
import unittest._
class TLRAMFragmenter(ramBeatBytes: Int, maxSize: Int, txns: Int)(implicit p: Parameters) extends LazyModule {
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel("Fragmenter"))
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes))
model.node := fuzz.node
ram.node :=
TLDelayer(0.1)(
TLBuffer(BufferParams.flow)(
TLDelayer(0.1)(
2017-05-10 01:34:29 +02:00
TLFragmenter(ramBeatBytes, maxSize, earlyAck = true)(
TLDelayer(0.1)(
TLBuffer(BufferParams.flow)(
TLFragmenter(ramBeatBytes, maxSize/2)(
TLDelayer(0.1)(
TLBuffer(BufferParams.flow)(
model.node)))))))))
lazy val module = new LazyModuleImp(this) with HasUnitTestIO {
io.finished := fuzz.module.io.finished
}
}
class TLRAMFragmenterTest(ramBeatBytes: Int, maxSize: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
io.finished := Module(LazyModule(new TLRAMFragmenter(ramBeatBytes,maxSize,txns)).module).io.finished
}