1
0
rocket-chip/uncore/coherence.scala
2012-02-25 15:27:09 -08:00

273 lines
9.6 KiB
Scala

package Top {
import Chisel._
import Constants._
import hwacha.GenArray
class HubMemReq extends Bundle {
val rw = Bool()
val addr = UFix(width = PADDR_BITS-OFFSET_BITS)
val tag = Bits(width = GLOBAL_XACT_ID_BITS)
// Figure out which data-in port to pull from
val data_idx = Bits(width = TILE_ID_BITS)
val is_probe_rep = Bool()
}
class MemData extends Bundle {
val data = Bits(width = MEM_DATA_BITS)
}
class TransactionInit extends Bundle {
val t_type = Bits(width = TTYPE_BITS)
val has_data = Bool()
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
val address = Bits(width = PADDR_BITS)
}
class TransactionInitData extends MemData
class TransactionAbort extends Bundle {
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
}
class ProbeRequest extends Bundle {
val p_type = Bits(width = PTYPE_BITS)
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
val address = Bits(width = PADDR_BITS)
}
class ProbeReply extends Bundle {
val p_type = Bits(width = PTYPE_BITS)
val has_data = Bool()
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class ProbeReplyData extends MemData
class TransactionReply extends Bundle {
val t_type = Bits(width = TTYPE_BITS)
val has_data = Bool()
val tile_xact_id = Bits(width = TILE_XACT_ID_BITS)
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class TransactionReplyData extends MemData
class TransactionFinish extends Bundle {
val global_xact_id = Bits(width = GLOBAL_XACT_ID_BITS)
}
class ioTileLink extends Bundle {
val xact_init = (new ioDecoupled) { new TransactionInit() }.flip
val xact_init_data = (new ioDecoupled) { new TransactionInitData() }.flip
val xact_abort = (new ioDecoupled) { new TransactionAbort() }
val probe_req = (new ioDecoupled) { new ProbeRequest() }
val probe_rep = (new ioDecoupled) { new ProbeReply() }.flip
val probe_rep_data = (new ioDecoupled) { new ProbeReplyData() }.flip
val xact_rep = (new ioDecoupled) { new TransactionReply() }
val xact_rep_data = (new ioDecoupled) { new TransactionReplyData() }
val xact_finish = (new ioDecoupled) { new TransactionFinish() }.flip
}
trait CoherencePolicy {
def cpuCmdToRW( cmd: Bits): (Bool, Bool) = {
val store = (cmd === M_XWR)
val load = (cmd === M_XRD)
val amo = cmd(3).toBool
val read = load || amo || (cmd === M_PFR)
val write = store || amo || (cmd === M_PFW)
(read, write)
}
}
trait ThreeStateIncoherence extends CoherencePolicy {
val tileInvalid :: tileClean :: tileDirty :: Nil = Enum(3){ UFix() }
def isHit ( cmd: Bits, state: UFix): Bool = {
val (read, write) = cpuCmdToRW(cmd)
( state === tileClean || state === tileDirty)
}
def isValid (state: UFix): Bool = {
state != tileInvalid
}
def needsWriteback (state: UFix): Bool = {
state === tileDirty
}
def newStateOnWriteback() = tileInvalid
def newStateOnFlush() = tileInvalid
def newState(cmd: Bits, state: UFix): UFix = {
val (read, write) = cpuCmdToRW(cmd)
Mux(write, tileDirty, Mux(read, Mux(state === tileDirty, tileDirty, tileClean), state))
}
def newStateOnHit(cmd: Bits, state: UFix): UFix = newState(cmd, state)
def newStateOnPrimaryMiss(cmd: Bits): UFix = newState(cmd, tileInvalid)
def newStateOnSecondaryMiss(cmd: Bits, state: UFix): UFix = {
val (read, write) = cpuCmdToRW(cmd)
Mux(write, tileDirty, state)
}
}
trait FourStateCoherence extends CoherencePolicy {
val tileInvalid :: tileShared :: tileExclusiveClean :: tileExclusiveDirty :: Nil = Enum(4){ UFix() }
val globalInvalid :: globalShared :: globalExclusiveClean :: Nil = Enum(3){ UFix() }
val probeInvalidate :: probeDowngrade :: probeCopy :: Nil = Enum(3){ UFix() }
def isHit ( cmd: Bits, state: UFix): Bool = {
val (read, write) = cpuCmdToRW(cmd)
((read && ( state === tileShared || state === tileExclusiveClean || state === tileExclusiveDirty)) ||
(write && (state === tileExclusiveClean || state === tileExclusiveDirty)))
}
def isValid (state: UFix): Bool = {
state != tileInvalid
}
def needsWriteback (state: UFix): Bool = {
state === tileExclusiveDirty
}
def newStateOnWriteback() = tileInvalid
def newStateOnFlush() = tileInvalid
// TODO: New funcs as compared to incoherent protocol:
def newState(cmd: Bits, state: UFix): UFix
def newStateOnHit(cmd: Bits, state: UFix): UFix
def newStateOnPrimaryMiss(cmd: Bits): UFix
def newStateOnSecondaryMiss(cmd: Bits, state: UFix): UFix
def needsSecondaryXact (cmd: Bits, outstanding: TransactionInit): Bool
def getMetaUpdateOnProbe (incoming: ProbeRequest): Bits = {
val state = UFix(0)
switch(incoming.p_type) {
is(probeInvalidate) { state := tileInvalid }
is(probeDowngrade) { state := tileShared }
}
state.toBits
}
}
class XactTracker(id: Int) extends Component {
val io = new Bundle {
val xact_init = (new ioDecoupled) { new TransactionInit() }
val probe_rep = (new ioDecoupled) { new ProbeReply() }
val probe_req = (new ioDecoupled) { new ProbeRequest() }.flip
val xact_rep = (new ioDecoupled) { new TransactionReply() }.flip
val mem_req = (new ioDecoupled) { new MemReq() }.flip
val xact_finish = Bool(INPUT)
val busy = Bool(OUTPUT)
val addr = Bits(PADDR_BITS, OUTPUT)
val tile_id = Bits(TILE_ID_BITS, OUTPUT)
val tile_xact_id = Bits(TILE_XACT_ID_BITS, OUTPUT)
val sharer_count = Bits(TILE_ID_BITS, OUTPUT)
val ttype = Bits(TTYPE_BITS, OUTPUT)
}
val valid = Reg(resetVal = Bool(false))
val addr = Reg{ Bits() }
val ttype = Reg{ Bits() }
val tile_id = Reg{ Bits() }
val tile_xact_id = Reg{ Bits() }
val probe_done = Reg{ Bits() }
}
abstract class CoherenceHub extends Component
class CoherenceHubNoDir extends CoherenceHub {
def coherenceConflict(addr1: Bits, addr2: Bits): Bool = {
addr1(PADDR_BITS-1, OFFSET_BITS) === addr2(PADDR_BITS-1, OFFSET_BITS)
}
def getTransactionReplyType(ttype: UFix, count: UFix): Bits = {
val ret = Wire() { Bits(width = TTYPE_BITS) }
switch (ttype) {
is(X_READ_SHARED) { ret := Mux(count > UFix(0), X_READ_SHARED, X_READ_EXCLUSIVE) }
is(X_READ_EXCLUSIVE) { ret := X_READ_EXCLUSIVE }
is(X_READ_UNCACHED) { ret := X_READ_UNCACHED }
is(X_WRITE_UNCACHED) { ret := X_WRITE_UNCACHED }
}
ret
}
val io = new Bundle {
val tiles = Vec(NTILES) { new ioTileLink() }
val mem = new ioDCache().flip
}
val trackerList = (0 until NGLOBAL_XACTS).map(new XactTracker(_))
val busy_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
val addr_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=PADDR_BITS)} }
val tile_id_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_ID_BITS)} }
val tile_xact_id_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_XACT_ID_BITS)} }
val sh_count_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TILE_ID_BITS)} }
val ttype_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bits(width=TTYPE_BITS)} }
val free_arr = GenArray(NGLOBAL_XACTS){ Wire(){Bool()} }
for( i <- 0 until NGLOBAL_XACTS) {
busy_arr.write( UFix(i), trackerList(i).io.busy)
addr_arr.write( UFix(i), trackerList(i).io.addr)
tile_id_arr.write( UFix(i), trackerList(i).io.tile_id)
tile_xact_id_arr.write(UFix(i), trackerList(i).io.tile_xact_id)
ttype_arr.write( UFix(i), trackerList(i).io.ttype)
sh_count_arr.write( UFix(i), trackerList(i).io.sharer_count)
trackerList(i).io.xact_finish := free_arr.read(UFix(i))
}
// Nack conflicting transaction init attempts
val aborting = Wire() { Bits(width = NTILES) }
val initiating = Wire() { Bits(width = NTILES) }
for( j <- 0 until NTILES ) {
val init = io.tiles(j).xact_init
val abort = io.tiles(j).xact_abort
val conflicts = Bits(width = NGLOBAL_XACTS)
for( i <- 0 until NGLOBAL_XACTS) {
val t = trackerList(i).io
conflicts(i) := t.busy(i) && coherenceConflict(t.addr, init.bits.address)
}
aborting(j) := (conflicts.orR || busy_arr.flatten().andR)
abort.valid := init.valid && aborting
abort.bits.tileTransactionID := init.bits.tileTransactionID
init.ready := aborting(j) || initiating(j)
}
// Free finished transactions
for( j <- 0 until NTILES ) {
val finish = io.tiles(j).xact_finish
free_arr.write(finish.bits.globalTransactionID, finish.valid)
finish.ready := Bool(true)
}
// Forward memory responses from mem to tile
val xrep_cnt = Reg(resetVal = UFix(0, log2up(REFILL_CYCLES)))
val xrep_cnt_next = xrep_cnt + UFix(1)
when (io.mem.resp_val) { xrep_cnt := xrep_cnt_next }
val idx = io.mem.resp_tag
val readys = Bits(width = NTILES)
for( j <- 0 until NTILES ) {
io.tiles(j).xact_rep.bits.ttype := getTransactionReplyType(ttype_arr.read(idx), sh_count_arr.read(idx))
io.tiles(j).xact_rep.bits.tileTransactionID := tile_xact_id_arr.read(idx)
io.tiles(j).xact_rep.bits.globalTransactionID := idx
io.tiles(j).xact_rep_data.bits.data := io.mem.resp_data
readys := Mux(xrep_cnt === UFix(0), io.tiles(j).xact_rep.ready && io.tiles(j).xact_rep_data.ready, io.tiles(j).xact_rep_data.ready)
val this_rep_valid = UFix(j) === tile_id_arr.read(idx) && io.mem.resp_val
io.tiles(j).xact_rep.valid := this_rep_valid && xrep_cnt === UFix(0)
io.tiles(j).xact_rep_data.valid := this_rep_valid
}
// If there were a ready signal due to e.g. intervening network:
//io.mem.resp_rdy := readys(tile_id_arr.read(idx)).xact_rep.ready
// Pick a single request of these types to process
//val xact_init_arb = (new Arbiter(NTILES)) { new TransactionInit() }
//val probe_reply_arb = (new Arbiter(NTILES)) { new ProbeReply() }
}
}