1
0
rocket-chip/src/main/scala/subsystem/CrossingWrapper.scala
2018-02-21 14:42:24 -08:00

199 lines
10 KiB
Scala

// See LICENSE.SiFive for license details.
package freechips.rocketchip.subsystem
import Chisel._
import freechips.rocketchip.config._
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.tilelink._
import freechips.rocketchip.amba.axi4._
import freechips.rocketchip.interrupts._
import freechips.rocketchip.util._
/** Enumerates the three types of clock crossing between tiles and system bus */
sealed trait SubsystemClockCrossing
{
def sameClock = this match {
case _: SynchronousCrossing => true
case _ => false
}
}
case class SynchronousCrossing(params: BufferParams = BufferParams.default) extends SubsystemClockCrossing
case class RationalCrossing(direction: RationalDirection = FastToSlow) extends SubsystemClockCrossing
case class AsynchronousCrossing(depth: Int, sync: Int = 3) extends SubsystemClockCrossing
private case class CrossingCheck(out: Boolean, source: BaseNode, sink: BaseNode)
trait HasCrossingMethods extends LazyModule with LazyScope
{
// Detect incorrect crossing connectivity
private var checks: List[CrossingCheck] = Nil
private def inside(node: BaseNode) = node.parents.exists(_ eq this)
override def instantiate() {
super.instantiate()
checks.foreach { case CrossingCheck(out, source, sink) =>
source.inputs.foreach { case (syncSource, _) =>
require (inside(syncSource) == out, s"${syncSource.name} must ${if(out)""else"not "}be inside ${name} (wrong .cross direction?)")
}
sink.outputs.foreach { case (syncSink, _) =>
require (inside(syncSink) != out, s"${syncSink.name} must ${if(out)"not "else""}be inside ${name} (wrong .cross direction?)")
}
}
}
// TileLink
def crossTLSyncInOut(out: Boolean)(params: BufferParams = BufferParams.default)(implicit p: Parameters): TLNode = {
val node = this { LazyModule(new TLBuffer(params)).node }
checks = CrossingCheck(out, node, node) :: checks
node
}
def crossTLAsyncInOut(out: Boolean)(depth: Int = 8, sync: Int = 3)(implicit p: Parameters): TLNode = {
lazy val asource = LazyModule(new TLAsyncCrossingSource(sync))
lazy val asink = LazyModule(new TLAsyncCrossingSink(depth, sync))
val source = if (out) this { asource } else asource
val sink = if (out) asink else this { asink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossTLRationalInOut(out: Boolean)(direction: RationalDirection)(implicit p: Parameters): TLNode = {
lazy val rsource = LazyModule(new TLRationalCrossingSource)
lazy val rsink = LazyModule(new TLRationalCrossingSink(if (out) direction else direction.flip))
val source = if (out) this { rsource } else rsource
val sink = if (out) rsink else this { rsink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossTLSyncIn (params: BufferParams = BufferParams.default)(implicit p: Parameters): TLNode = crossTLSyncInOut(false)(params)
def crossTLSyncOut(params: BufferParams = BufferParams.default)(implicit p: Parameters): TLNode = crossTLSyncInOut(true )(params)
def crossTLAsyncIn (depth: Int = 8, sync: Int = 3)(implicit p: Parameters): TLNode = crossTLAsyncInOut(false)(depth, sync)
def crossTLAsyncOut(depth: Int = 8, sync: Int = 3)(implicit p: Parameters): TLNode = crossTLAsyncInOut(true )(depth, sync)
def crossTLRationalIn (direction: RationalDirection)(implicit p: Parameters): TLNode = crossTLRationalInOut(false)(direction)
def crossTLRationalOut(direction: RationalDirection)(implicit p: Parameters): TLNode = crossTLRationalInOut(true )(direction)
def crossTLIn(arg: SubsystemClockCrossing)(implicit p: Parameters): TLNode = arg match {
case x: SynchronousCrossing => crossTLSyncIn(x.params)
case x: AsynchronousCrossing => crossTLAsyncIn(x.depth, x.sync)
case x: RationalCrossing => crossTLRationalIn(x.direction)
}
def crossTLOut(arg: SubsystemClockCrossing)(implicit p: Parameters): TLNode = arg match {
case x: SynchronousCrossing => crossTLSyncOut(x.params)
case x: AsynchronousCrossing => crossTLAsyncOut(x.depth, x.sync)
case x: RationalCrossing => crossTLRationalOut(x.direction)
}
// AXI4
def crossAXI4SyncInOut(out: Boolean)(params: BufferParams = BufferParams.default)(implicit p: Parameters): AXI4Node = {
val node = this { LazyModule(new AXI4Buffer(params)).node }
checks = CrossingCheck(out, node, node) :: checks
node
}
def crossAXI4AsyncInOut(out: Boolean)(depth: Int = 8, sync: Int = 3)(implicit p: Parameters): AXI4Node = {
lazy val axi4asource = LazyModule(new AXI4AsyncCrossingSource(sync))
lazy val axi4asink = LazyModule(new AXI4AsyncCrossingSink(depth, sync))
val source = if (out) this { axi4asource } else axi4asource
val sink = if (out) axi4asink else this { axi4asink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossAXI4SyncIn (params: BufferParams = BufferParams.default)(implicit p: Parameters): AXI4Node = crossAXI4SyncInOut(false)(params)
def crossAXI4SyncOut(params: BufferParams = BufferParams.default)(implicit p: Parameters): AXI4Node = crossAXI4SyncInOut(true )(params)
def crossAXI4AsyncIn (depth: Int = 8, sync: Int = 3)(implicit p: Parameters): AXI4Node = crossAXI4AsyncInOut(false)(depth, sync)
def crossAXI4AsyncOut(depth: Int = 8, sync: Int = 3)(implicit p: Parameters): AXI4Node = crossAXI4AsyncInOut(true )(depth, sync)
def crossAXI4In(arg: SubsystemClockCrossing)(implicit p: Parameters): AXI4Node = arg match {
case x: SynchronousCrossing => crossAXI4SyncIn(x.params)
case x: AsynchronousCrossing => crossAXI4AsyncIn(x.depth, x.sync)
case x: RationalCrossing => throw new IllegalArgumentException("AXI4 Rational crossing unimplemented")
}
def crossAXI4Out(arg: SubsystemClockCrossing)(implicit p: Parameters): AXI4Node = arg match {
case x: SynchronousCrossing => crossAXI4SyncOut(x.params)
case x: AsynchronousCrossing => crossAXI4AsyncOut(x.depth, x.sync)
case x: RationalCrossing => throw new IllegalArgumentException("AXI4 Rational crossing unimplemented")
}
// Interrupts
def crossIntSyncInOut(out: Boolean)(alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = {
lazy val intssource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
lazy val intssink = LazyModule(new IntSyncCrossingSink(0))
val source = if (out) this { intssource } else intssource
val sink = if (out) intssink else this { intssink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossIntAsyncInOut(out: Boolean)(sync: Int = 3, alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = {
lazy val intasource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
lazy val intasink = LazyModule(new IntSyncCrossingSink(sync))
val source = if (out) this { intasource } else intasource
val sink = if (out) intasink else this { intasink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossIntRationalInOut(out: Boolean)(alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = {
lazy val intrsource = LazyModule(new IntSyncCrossingSource(alreadyRegistered))
lazy val intrsink = LazyModule(new IntSyncCrossingSink(1))
val source = if (out) this { intrsource } else intrsource
val sink = if (out) intrsink else this { intrsink }
sink.node :*=* source.node
checks = CrossingCheck(out, source.node, sink.node) :: checks
NodeHandle(source.node, sink.node)
}
def crossIntSyncIn (alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntSyncInOut(false)(alreadyRegistered)
def crossIntSyncOut(alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntSyncInOut(true )(alreadyRegistered)
def crossIntAsyncIn (sync: Int = 3, alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntAsyncInOut(false)(sync, alreadyRegistered)
def crossIntAsyncOut(sync: Int = 3, alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntAsyncInOut(true )(sync, alreadyRegistered)
def crossIntRationalIn (alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntRationalInOut(false)(alreadyRegistered)
def crossIntRationalOut(alreadyRegistered: Boolean = false)(implicit p: Parameters): IntNode = crossIntRationalInOut(true )(alreadyRegistered)
def crossIntIn(arg: SubsystemClockCrossing, alreadyRegistered: Boolean)(implicit p: Parameters): IntNode = arg match {
case x: SynchronousCrossing => crossIntSyncIn(alreadyRegistered)
case x: AsynchronousCrossing => crossIntAsyncIn(x.sync, alreadyRegistered)
case x: RationalCrossing => crossIntRationalIn(alreadyRegistered)
}
def crossIntOut(arg: SubsystemClockCrossing, alreadyRegistered: Boolean)(implicit p: Parameters): IntNode = arg match {
case x: SynchronousCrossing => crossIntSyncOut(alreadyRegistered)
case x: AsynchronousCrossing => crossIntAsyncOut(x.sync, alreadyRegistered)
case x: RationalCrossing => crossIntRationalOut(alreadyRegistered)
}
def crossIntIn (arg: SubsystemClockCrossing)(implicit p: Parameters): IntNode = crossIntIn (arg, false)
def crossIntOut(arg: SubsystemClockCrossing)(implicit p: Parameters): IntNode = crossIntOut(arg, false)
}
trait HasCrossing extends HasCrossingMethods
{
this: LazyModule =>
val crossing: SubsystemClockCrossing
def crossTLIn (implicit p: Parameters): TLNode = crossTLIn (crossing)
def crossTLOut (implicit p: Parameters): TLNode = crossTLOut (crossing)
def crossAXI4In (implicit p: Parameters): AXI4Node= crossAXI4In (crossing)
def crossAXI4Out(implicit p: Parameters): AXI4Node= crossAXI4Out(crossing)
def crossIntIn (implicit p: Parameters): IntNode = crossIntIn (crossing)
def crossIntOut (implicit p: Parameters): IntNode = crossIntOut (crossing)
def crossIntIn (alreadyRegistered: Boolean)(implicit p: Parameters): IntNode = crossIntIn (crossing, alreadyRegistered)
def crossIntOut(alreadyRegistered: Boolean)(implicit p: Parameters): IntNode = crossIntOut(crossing, alreadyRegistered)
}
class CrossingWrapper(val crossing: SubsystemClockCrossing)(implicit p: Parameters) extends SimpleLazyModule with HasCrossing