1
0
Fork 0
rocket-chip/rocket/src/main/scala/dcache.scala

423 lines
16 KiB
Scala

package Top {
import Chisel._
import Node._;
import Constants._;
import scala.math._;
// interface between D$ and processor/DTLB
class ioDmem(view: List[String] = null) extends Bundle(view) {
// val dtlb_busy = Bool('input);
val dtlb_miss = Bool('input);
val req_val = Bool('input);
val req_rdy = Bool('output);
val req_cmd = Bits(4, 'input);
val req_type = Bits(3, 'input);
val req_idx = Bits(PGIDX_BITS, 'input);
val req_ppn = Bits(PPN_BITS, 'input);
// val req_addr = UFix(PADDR_BITS, 'input);
val req_data = Bits(64, 'input);
val req_tag = Bits(5, 'input);
val resp_miss = Bool('output);
val resp_val = Bool('output);
val resp_data = Bits(64, 'output);
val resp_tag = Bits(12, 'output);
}
// interface between D$ and next level in memory hierarchy
class ioDcache(view: List[String] = null) extends Bundle(view) {
val req_addr = UFix(PADDR_BITS, 'input);
val req_tag = UFix(3, 'input);
val req_val = Bool('input);
val req_rdy = Bool('output);
val req_wdata = Bits(128, 'input);
val req_rw = Bool('input);
val resp_data = Bits(128, 'output);
// val resp_tag = Bits(3, 'output);
val resp_val = Bool('output);
}
class ioDCacheDM extends Bundle() {
val cpu = new ioDmem();
val mem = new ioDcache().flip();
}
class rocketDCacheStoreGen extends Component {
val io = new Bundle {
val req_type = Bits(3, 'input);
val req_addr_lsb = Bits(3, 'input);
val req_data = Bits(64, 'input);
val store_wmask = Bits(64, 'output);
val store_data = Bits(64, 'output);
}
// generate write mask and store data signals based on store type and address LSBs
val wmask_b =
Mux(io.req_addr_lsb === UFix(0, 3), Bits("b0000_0001", 8),
Mux(io.req_addr_lsb === UFix(1, 3), Bits("b0000_0010", 8),
Mux(io.req_addr_lsb === UFix(2, 3), Bits("b0000_0100", 8),
Mux(io.req_addr_lsb === UFix(3, 3), Bits("b0000_1000", 8),
Mux(io.req_addr_lsb === UFix(4, 3), Bits("b0001_0000", 8),
Mux(io.req_addr_lsb === UFix(5, 3), Bits("b0010_0000", 8),
Mux(io.req_addr_lsb === UFix(6, 3), Bits("b0100_0000", 8),
Mux(io.req_addr_lsb === UFix(7, 3), Bits("b1000_0000", 8),
UFix(0, 8)))))))));
val wmask_h =
Mux(io.req_addr_lsb(2,1) === UFix(0, 2), Bits("b0000_0011", 8),
Mux(io.req_addr_lsb(2,1) === UFix(1, 2), Bits("b0000_1100", 8),
Mux(io.req_addr_lsb(2,1) === UFix(2, 2), Bits("b0011_0000", 8),
Mux(io.req_addr_lsb(2,1) === UFix(3, 2), Bits("b1100_0000", 8),
UFix(0, 8)))));
val wmask_w =
Mux(io.req_addr_lsb(2) === UFix(0, 1), Bits("b0000_1111", 8),
Mux(io.req_addr_lsb(2) === UFix(1, 1), Bits("b1111_0000", 8),
UFix(0, 8)));
val wmask_d =
Bits("b1111_1111", 8);
val store_wmask_byte =
Mux(io.req_type === MT_B, wmask_b,
Mux(io.req_type === MT_H, wmask_h,
Mux(io.req_type === MT_W, wmask_w,
Mux(io.req_type === MT_D, wmask_d,
UFix(0, 8)))));
io.store_wmask :=
Cat(Fill(8, store_wmask_byte(7)),
Fill(8, store_wmask_byte(6)),
Fill(8, store_wmask_byte(5)),
Fill(8, store_wmask_byte(4)),
Fill(8, store_wmask_byte(3)),
Fill(8, store_wmask_byte(2)),
Fill(8, store_wmask_byte(1)),
Fill(8, store_wmask_byte(0)));
io.store_data :=
Mux(io.req_type === MT_B, Fill(8, io.req_data( 7,0)),
Mux(io.req_type === MT_H, Fill(4, io.req_data(15,0)),
Mux(io.req_type === MT_W, Fill(2, io.req_data(31,0)),
Mux(io.req_type === MT_D, io.req_data,
UFix(0, 64)))));
}
// state machine to flush (write back dirty lines, invalidate clean ones) the D$
class rocketDCacheDM_flush(lines: Int) extends Component {
val io = new ioDCacheDM();
val dcache = new rocketDCacheDM(lines);
val addrbits = PADDR_BITS;
val indexbits = ceil(log10(lines)/log10(2)).toInt;
val offsetbits = 6;
val tagmsb = addrbits - 1;
val taglsb = indexbits+offsetbits;
val tagbits = tagmsb-taglsb+1;
val indexmsb = taglsb-1;
val indexlsb = offsetbits;
val offsetmsb = indexlsb-1;
val offsetlsb = 3;
val flush_count = Reg(resetVal = UFix(0, indexbits));
val flush_resp_count = Reg(resetVal = UFix(0, indexbits));
val flushing = Reg(resetVal = Bool(false));
val flush_waiting = Reg(resetVal = Bool(false));
val r_cpu_req_tag = Reg(resetVal = Bits(0, 5));
when (io.cpu.req_val && io.cpu.req_rdy && (io.cpu.req_cmd === M_FLA))
{
r_cpu_req_tag <== io.cpu.req_tag;
flushing <== Bool(true);
flush_waiting <== Bool(true);
}
when (dcache.io.cpu.req_rdy && (flush_count === ~Bits(0, indexbits))) {
flushing <== Bool(false);
}
when (dcache.io.cpu.resp_val && (dcache.io.cpu.resp_tag === r_cpu_req_tag) && (flush_resp_count === ~Bits(0, indexbits))) {
flush_waiting <== Bool(false);
}
when (flushing && dcache.io.cpu.req_rdy) {
flush_count <== flush_count + UFix(1,1);
}
when (flush_waiting && dcache.io.cpu.resp_val && (dcache.io.cpu.resp_tag(5,0) === r_cpu_req_tag)) {
flush_resp_count <== flush_resp_count + UFix(1,1);
}
dcache.io.cpu.req_val := (io.cpu.req_val && (io.cpu.req_cmd != M_FLA) && !flush_waiting) || flushing;
dcache.io.cpu.req_cmd := Mux(flushing, M_FLA, io.cpu.req_cmd);
dcache.io.cpu.req_idx := Mux(flushing, Cat(flush_count, Bits(0,offsetbits)), io.cpu.req_idx);
dcache.io.cpu.req_ppn := Mux(flushing, UFix(0,PPN_BITS), io.cpu.req_ppn);
// dcache.io.cpu.req_addr :=
// Mux(flushing, Cat(Bits(0,tagmsb-taglsb+1), flush_count, Bits(0,offsetbits)).toUFix,
// io.cpu.req_addr);
dcache.io.cpu.req_tag := Mux(flushing, r_cpu_req_tag, io.cpu.req_tag);
dcache.io.cpu.req_type := io.cpu.req_type;
dcache.io.cpu.req_data ^^ io.cpu.req_data;
// dcache.io.cpu.dtlb_busy := io.cpu.dtlb_busy;
dcache.io.cpu.dtlb_miss := io.cpu.dtlb_miss;
dcache.io.mem ^^ io.mem;
io.cpu.req_rdy := dcache.io.cpu.req_rdy && !flush_waiting;
io.cpu.resp_miss := dcache.io.cpu.resp_miss;
io.cpu.resp_data := dcache.io.cpu.resp_data;
io.cpu.resp_tag := dcache.io.cpu.resp_tag;
io.cpu.resp_val := dcache.io.cpu.resp_val &
!(flush_waiting && (io.cpu.resp_tag === r_cpu_req_tag) && (flush_count != ~Bits(0, addrbits)));
}
class rocketDCacheDM(lines: Int) extends Component {
val io = new ioDCacheDM();
val addrbits = PADDR_BITS;
val indexbits = ceil(log10(lines)/log10(2)).toInt;
val offsetbits = 6; // 64 byte cache lines = 2^6 bytes
val tagmsb = PADDR_BITS-1;
val taglsb = indexbits+offsetbits;
val tagbits = tagmsb-taglsb+1;
val indexmsb = taglsb-1;
val indexlsb = offsetbits;
val offsetmsb = indexlsb-1;
val offsetlsb = 3;
val s_reset :: s_ready :: s_replay_load :: s_start_writeback :: s_writeback :: s_req_refill :: s_refill :: s_resolve_miss :: Nil = Enum(8) { UFix() };
val state = Reg(resetVal = s_reset);
// idx arrives one clock cycle prior to ppn b/c of DTLB
val r_cpu_req_idx = Reg(resetVal = Bits(0, PGIDX_BITS));
val r_cpu_req_ppn = Reg(resetVal = Bits(0, PPN_BITS));
val r_cpu_req_val = Reg(resetVal = Bool(false));
val r_cpu_req_cmd = Reg(resetVal = Bits(0,4));
val r_cpu_req_type = Reg(resetVal = Bits(0,3));
val r_cpu_req_tag = Reg(resetVal = Bits(0,5));
val r_cpu_resp_val = Reg(resetVal = Bool(false));
val p_store_data = Reg(resetVal = Bits(0,64));
val p_store_idx = Reg(resetVal = Bits(0,PGIDX_BITS));
val p_store_type = Reg(resetVal = Bits(0,3));
val p_store_valid = Reg(resetVal = Bool(false));
val req_store = (io.cpu.req_cmd === M_XWR);
val req_load = (io.cpu.req_cmd === M_XRD) || (io.cpu.req_cmd === M_PRD);
val r_req_load = (r_cpu_req_cmd === M_XRD) || (r_cpu_req_cmd === M_PRD);
val r_req_store = (r_cpu_req_cmd === M_XWR);
val r_req_flush = (r_cpu_req_cmd === M_FLA);
val r_req_ptw_load = (r_cpu_req_cmd === M_PRD);
when (io.cpu.req_val && io.cpu.req_rdy) {
r_cpu_req_idx <== io.cpu.req_idx;
r_cpu_req_cmd <== io.cpu.req_cmd;
r_cpu_req_type <== io.cpu.req_type;
r_cpu_req_tag <== io.cpu.req_tag;
}
when ((state === s_ready) && r_cpu_req_val && !io.cpu.dtlb_miss) {
r_cpu_req_ppn <== io.cpu.req_ppn;
}
when (io.cpu.req_rdy) {
r_cpu_req_val <== io.cpu.req_val;
}
otherwise {
r_cpu_req_val <== Bool(false);
}
when (((state === s_resolve_miss) && r_req_load) || (state === s_replay_load)) {
r_cpu_resp_val <== Bool(true);
}
otherwise {
r_cpu_resp_val <== Bool(false);
}
// refill counter
val rr_count = Reg(resetVal = UFix(0,2));
val rr_count_next = rr_count + UFix(1);
when (((state === s_refill) && io.mem.resp_val) || ((state === s_writeback) && io.mem.req_rdy)) {
rr_count <== rr_count_next;
}
// tag array
val tag_addr =
Mux((state === s_ready), io.cpu.req_idx(PGIDX_BITS-1,offsetbits),
r_cpu_req_idx(PGIDX_BITS-1,offsetbits)).toUFix;
val tag_we =
((state === s_refill) && io.mem.req_rdy && (rr_count === UFix(3,2))) ||
((state === s_resolve_miss) && r_req_flush);
val tag_array = new rocketSRAMsp(lines, tagbits);
tag_array.io.a := tag_addr;
tag_array.io.d := r_cpu_req_ppn;
tag_array.io.we := tag_we;
tag_array.io.bweb := ~Bits(0,tagbits);
tag_array.io.ce := (state === s_ready) || (state === s_start_writeback) || (state === s_writeback);
val tag_rdata = tag_array.io.q;
// valid bit array
val vb_array = Reg(resetVal = Bits(0, lines));
// val vb_rdata = Reg(vb_array(tag_raddr));
when (tag_we && !r_req_flush) {
vb_array <== vb_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1));
}
when (tag_we && r_req_flush) {
vb_array <== vb_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(0,1));
}
val vb_rdata = Reg(vb_array(tag_addr).toBool);
val tag_valid = r_cpu_req_val && vb_rdata;
// val tag_valid = Reg(vb_array(tag_addr)).toBool;
val tag_match = (tag_rdata === io.cpu.req_ppn);
val addr_match = (r_cpu_req_idx(PGIDX_BITS-1,offsetbits) === p_store_idx(PGIDX_BITS-1,offsetbits));
val ldst_conflict = r_cpu_req_val && r_req_load && p_store_valid && addr_match;
// write the pending store data when the cache is idle, when the next command isn't a load
// or when there's a load to the same address (in which case there's a 2 cycle delay:
// once cycle to write the store data and another to read the data back)
val drain_store = !io.cpu.dtlb_miss && p_store_valid && (!io.cpu.req_val || req_store || ldst_conflict);
// write pending store data from a store which missed
// after the cache line refill has completed
val resolve_store = (state === s_resolve_miss) && r_req_store;
// dirty bit array
val db_array = Reg(resetVal = Bits(0, lines));
// val db_rdata = Reg(db_array(tag_raddr));
val tag_dirty = Reg(db_array(tag_addr)).toBool;
when (io.cpu.req_val && io.cpu.req_rdy && req_store) {
p_store_idx <== io.cpu.req_idx;
p_store_data <== io.cpu.req_data;
p_store_type <== io.cpu.req_type;
p_store_valid <== Bool(true);
}
// cancel store if there's a DTLB miss
when (r_cpu_req_val && r_req_store && io.cpu.dtlb_miss)
{
p_store_valid <== Bool(false);
}
when (drain_store) {
p_store_valid <== Bool(false);
db_array <== db_array.bitSet(p_store_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1));
}
when (resolve_store) {
db_array <== db_array.bitSet(p_store_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1));
}
when (tag_we) {
db_array <== db_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(0,1));
}
// generate write mask and data signals for stores
val storegen = new rocketDCacheStoreGen();
storegen.io.req_addr_lsb := p_store_idx(2,0);
storegen.io.req_data := p_store_data;
storegen.io.req_type := p_store_type
val store_data = Fill(2, storegen.io.store_data);
val store_wmask_d = storegen.io.store_wmask;
val store_idx_sel = p_store_idx(offsetlsb).toBool;
val store_wmask = Mux(store_idx_sel, Cat(store_wmask_d, Bits(0,64)), Cat(Bits(0,64), store_wmask_d));
// data array
val data_array = new rocketSRAMsp(lines*4, 128);
data_array.io.a :=
Mux(drain_store || resolve_store, p_store_idx(PGIDX_BITS-1, offsetmsb-1),
Mux((state === s_writeback) && io.mem.req_rdy, Cat(r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count_next),
Mux((state === s_start_writeback) || (state === s_writeback) || (state === s_refill), Cat(r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count),
Mux((state === s_resolve_miss) || (state === s_replay_load), r_cpu_req_idx(PGIDX_BITS-1, offsetmsb-1),
io.cpu.req_idx(PGIDX_BITS-1, offsetmsb-1))))).toUFix;
data_array.io.d := Mux((state === s_refill), io.mem.resp_data, store_data);
data_array.io.we := ((state === s_refill) && io.mem.resp_val) || drain_store || resolve_store;
data_array.io.bweb := Mux((state === s_refill), ~Bits(0,128), store_wmask);
// data_array.io.ce := Bool(true); // FIXME
data_array.io.ce :=
(io.cpu.req_val && io.cpu.req_rdy && req_load) ||
(state === s_start_writeback) ||
(state === s_writeback) ||
((state === s_resolve_miss) && r_req_load) ||
(state === s_replay_load);
val data_array_rdata = data_array.io.q;
// signal a load miss when the data isn't present in the cache and when it's in the pending store data register
// (causes the cache to block for 2 cycles and the load instruction is replayed)
val hit = tag_valid && tag_match;
val load_miss = !io.cpu.dtlb_miss && (state === s_ready) && r_cpu_req_val && r_req_load && (!hit || (p_store_valid && addr_match));
// output signals
// busy when there's a load to the same address as a pending store, or on a cache miss, or when executing a flush
io.cpu.req_rdy := !io.cpu.dtlb_miss && (state === s_ready) && !ldst_conflict && (!r_cpu_req_val || (hit && !r_req_flush));
io.cpu.resp_val := !io.cpu.dtlb_miss && ((state === s_ready) && hit && r_req_load && !(p_store_valid && addr_match)) ||
((state === s_resolve_miss) && r_req_flush) ||
r_cpu_resp_val;
io.cpu.resp_miss := load_miss;
// tag MSB distinguishes between loads destined for the PTW and CPU
io.cpu.resp_tag := Cat(r_req_ptw_load, r_cpu_req_type, r_cpu_req_idx(2,0), r_cpu_req_tag);
io.cpu.resp_data :=
Mux(r_cpu_req_idx(offsetlsb).toBool, data_array_rdata(127, 64),
data_array_rdata(63,0));
io.mem.req_val := (state === s_req_refill) || (state === s_writeback);
io.mem.req_rw := (state === s_writeback);
io.mem.req_wdata := data_array_rdata;
io.mem.req_tag := UFix(0);
io.mem.req_addr :=
Mux(state === s_writeback, Cat(tag_rdata, r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count),
Cat(r_cpu_req_ppn, r_cpu_req_idx(PGIDX_BITS-1, offsetbits), Bits(0,2))).toUFix;
// control state machine
switch (state) {
is (s_reset) {
state <== s_ready;
}
is (s_ready) {
when (io.cpu.dtlb_miss) {
state <== s_ready;
}
when (ldst_conflict) {
state <== s_replay_load;
}
when (!r_cpu_req_val || (hit && !r_req_flush)) {
state <== s_ready;
}
when (tag_valid & tag_dirty) {
state <== s_start_writeback;
}
when (r_req_flush) {
state <== s_resolve_miss;
}
otherwise {
state <== s_req_refill;
}
}
is (s_replay_load) {
state <== s_ready;
}
is (s_start_writeback) {
state <== s_writeback;
}
is (s_writeback) {
when (io.mem.req_rdy && (rr_count === UFix(3,2))) {
when (r_req_flush) {
state <== s_resolve_miss;
}
otherwise {
state <== s_req_refill;
}
}
}
is (s_req_refill)
{
when (io.mem.req_rdy) { state <== s_refill; }
}
is (s_refill) {
when (io.mem.resp_val && (rr_count === UFix(3,2))) { state <== s_resolve_miss; }
}
is (s_resolve_miss) {
state <== s_ready;
}
}
}
}