1
0
Fork 0
rocket-chip/rocket/src/main/scala/consts.scala

240 lines
6.5 KiB
Scala

package Top {
import Chisel._
import scala.math._
object Constants
{
val BR_N = UFix(0, 4);
val BR_EQ = UFix(1, 4);
val BR_NE = UFix(2, 4);
val BR_LT = UFix(3, 4);
val BR_LTU = UFix(4, 4);
val BR_GE = UFix(5, 4);
val BR_GEU = UFix(6, 4);
val BR_J = UFix(7, 4);
val BR_JR = UFix(8, 4);
val PC_4 = UFix(0, 3);
val PC_BTB = UFix(1, 3);
val PC_EX4 = UFix(2, 3);
val PC_BR = UFix(3, 3);
val PC_PCR = UFix(4, 3);
val PC_WB = UFix(5, 3);
val PC_EVEC = UFix(6, 3);
val PC_JR = UFix(7, 3);
val REN_Y = UFix(1, 1);
val REN_N = UFix(0, 1);
val A2_X = UFix(0, 3);
val A2_BTYPE = UFix(0, 3);
val A2_LTYPE = UFix(1, 3);
val A2_ITYPE = UFix(2, 3);
val A2_ZERO = UFix(4, 3);
val A2_JTYPE = UFix(5, 3);
val A2_RTYPE = UFix(6, 3);
val MUL_X = UFix(0, 2);
val MUL_LO = UFix(0, 2);
val MUL_H = UFix(1, 2);
val MUL_HSU = UFix(2, 2);
val MUL_HU = UFix(3, 2);
val DIV_X = UFix(0, 2);
val DIV_D = UFix(0, 2);
val DIV_DU = UFix(1, 2);
val DIV_R = UFix(2, 2);
val DIV_RU = UFix(3, 2);
val M_N = UFix(0, 1);
val M_Y = UFix(1, 1);
val WEN_N = UFix(0, 1);
val WEN_Y = UFix(1, 1);
val WA_X = UFix(0, 1);
val WA_RD = UFix(0, 1);
val WA_RA = UFix(1, 1);
val WB_X = UFix(0, 3);
val WB_PC = UFix(0, 3);
val WB_PCR = UFix(1, 3);
val WB_ALU = UFix(2, 3);
val WB_TSC = UFix(4, 3);
val WB_IRT = UFix(5, 3);
val N = UFix(0, 1);
val Y = UFix(1, 1);
val FN_X = UFix(0, 4);
val FN_ADD = UFix(0, 4);
val FN_SUB = UFix(1, 4);
val FN_SLT = UFix(2, 4);
val FN_SLTU = UFix(3, 4);
val FN_AND = UFix(4, 4);
val FN_OR = UFix(5, 4);
val FN_XOR = UFix(6, 4);
val FN_SL = UFix(7, 4);
val FN_SR = UFix(8, 4);
val FN_SRA = UFix(9, 4);
val FN_OP2 = UFix(10, 4);
val DW_X = UFix(0, 1);
val DW_32 = UFix(0, 1);
val DW_64 = UFix(1, 1);
val DW_XPR = UFix(1, 1);
val RA = UFix(1, 5);
val MT_X = Bits("b000", 3);
val MT_B = Bits("b000", 3);
val MT_H = Bits("b001", 3);
val MT_W = Bits("b010", 3);
val MT_D = Bits("b011", 3);
val MT_BU = Bits("b100", 3);
val MT_HU = Bits("b101", 3);
val MT_WU = Bits("b110", 3);
val M_X = UFix(0, 4);
val M_XRD = Bits("b0000", 4); // int load
val M_XWR = Bits("b0001", 4); // int store
val M_PFR = Bits("b0010", 4); // prefetch with intent to read
val M_PFW = Bits("b0011", 4); // prefetch with intent to write
val M_FLA = Bits("b0100", 4); // write back and invlaidate all lines
val M_FENCE = Bits("b0101", 4); // memory fence
val M_INV = Bits("b0110", 4); // write back and invalidate line
val M_CLN = Bits("b0111", 4); // write back line
val M_XA_ADD = Bits("b1000", 4);
val M_XA_SWAP = Bits("b1001", 4);
val M_XA_AND = Bits("b1010", 4);
val M_XA_OR = Bits("b1011", 4);
val M_XA_MIN = Bits("b1100", 4);
val M_XA_MAX = Bits("b1101", 4);
val M_XA_MINU = Bits("b1110", 4);
val M_XA_MAXU = Bits("b1111", 4);
val I_X = Bits(0,2);
val I_DI = Bits(1,2);
val I_EI = Bits(2,2);
val SYNC_N = Bits(0,2);
val SYNC_D = Bits(1,2);
val SYNC_I = Bits(2,2);
val PCR_STATUS = UFix( 0, 5);
val PCR_EPC = UFix( 1, 5);
val PCR_BADVADDR = UFix( 2, 5);
val PCR_EVEC = UFix( 3, 5);
val PCR_COUNT = UFix( 4, 5);
val PCR_COMPARE = UFix( 5, 5);
val PCR_CAUSE = UFix( 6, 5);
val PCR_PTBR = UFix( 7, 5);
val PCR_SEND_IPI = UFix( 8, 5);
val PCR_CLR_IPI = UFix( 9, 5);
val PCR_COREID = UFix(10, 5);
val PCR_K0 = UFix(12, 5);
val PCR_K1 = UFix(13, 5);
val PCR_TOHOST = UFix(16, 5);
val PCR_FROMHOST = UFix(17, 5);
val PCR_VECBANK = UFix(18, 5);
// definition of bits in PCR status reg
val SR_ET = 0; // enable traps
val SR_EF = 1; // enable floating point
val SR_EV = 2; // enable vector unit
val SR_EC = 3; // enable compressed instruction encoding
val SR_PS = 4; // mode stack bit
val SR_S = 5; // user/supervisor mode
val SR_UX = 6; // 64 bit user mode
val SR_SX = 7; // 64 bit supervisor mode
val SR_VM = 16; // VM enable
val COREID = 0;
val PADDR_BITS = 40;
val VADDR_BITS = 43;
val PGIDX_BITS = 13;
val PPN_BITS = PADDR_BITS-PGIDX_BITS;
val VPN_BITS = VADDR_BITS-PGIDX_BITS;
val ASID_BITS = 7;
val PERM_BITS = 6;
// rocketNBDCache parameters
val CPU_DATA_BITS = 64;
val CPU_TAG_BITS = 9;
val DCACHE_TAG_BITS = 1 + CPU_TAG_BITS;
val OFFSET_BITS = 6; // log2(cache line size in bytes)
val NMSHR = 2; // number of primary misses
val NRPQ = 16; // number of secondary misses
val NSDQ = 17; // number of secondary stores/AMOs
val LG_REFILL_WIDTH = 4; // log2(cache bus width in bytes)
val IDX_BITS = 7;
val TAG_BITS = PADDR_BITS - OFFSET_BITS - IDX_BITS;
val NWAYS = 1;
require(IDX_BITS+OFFSET_BITS <= PGIDX_BITS);
// coherence parameters
val NTILES = 1
val COHERENCE_DATA_BITS = (1 << OFFSET_BITS)*8
val TILE_ID_BITS = 1
val TILE_XACT_ID_BITS = 1 // log2(NMSHR)
val GLOBAL_XACT_ID_BITS = IDX_BITS // if one active xact per set
val NGLOBAL_XACTS = 1 << IDX_BITS
val TTYPE_BITS = 2
val X_READ_SHARED = UFix(0, TTYPE_BITS)
val X_READ_EXCLUSIVE = UFix(1, TTYPE_BITS)
val X_READ_UNCACHED = UFix(2, TTYPE_BITS)
val X_WRITE_UNCACHED = UFix(3, TTYPE_BITS)
val PTYPE_BITS = 2
val P_INVALIDATE = UFix(0, PTYPE_BITS)
val P_DOWNGRADE = UFix(1, PTYPE_BITS)
val P_COPY = UFix(2, PTYPE_BITS)
// external memory interface
val IMEM_TAG_BITS = 1;
val DMEM_TAG_BITS = ceil(log(NMSHR)/log(2)).toInt;
val MEM_TAG_BITS = 2 + max(IMEM_TAG_BITS, DMEM_TAG_BITS);
val MEM_DATA_BITS = 128;
val REFILL_CYCLES = (1 << OFFSET_BITS)*8/MEM_DATA_BITS;
val DTLB_ENTRIES = 8;
val ITLB_ENTRIES = 8;
// physical memory size (# 8K pages)
// if you change this value, make sure to also change MEMORY_SIZE variable in memif.h
val MEMSIZE_PAGES = 0x8000; // 256 megs
val MEMSIZE_BYTES = MEMSIZE_PAGES*8192;
val START_ADDR = 0x2000;
val HAVE_RVC = false
val HAVE_FPU = true
val HAVE_VEC = false
val FPU_N = UFix(0, 1);
val FPU_Y = if (HAVE_FPU) UFix(1, 1) else FPU_N;
val VEC_N = UFix(0, 1);
val VEC_Y = if (HAVE_VEC) UFix(1, 1) else VEC_N;
val VEC_X = UFix(0, 1)
val VEC_VL = UFix(0, 1)
val VEC_CFG = UFix(1, 1)
val VCMD_I = UFix(0, 3)
val VCMD_F = UFix(1, 3)
val VCMD_TX = UFix(2, 3)
val VCMD_TF = UFix(3, 3)
val VCMD_MX = UFix(4, 3)
val VCMD_MF = UFix(5, 3)
val VCMD_X = UFix(0, 3)
val VIMM_VLEN = UFix(0, 1)
val VIMM_ALU = UFix(1, 1)
val VIMM_X = UFix(0, 1)
}
}