1
0
rocket-chip/csrc/emulator.cc

308 lines
8.2 KiB
C++

// See LICENSE for license details.
#ifndef VERILATOR
#include "emulator.h"
#else
#include "verilated.h"
#if VM_TRACE
#include "verilated_vcd_c.h"
#endif
#endif
#include "mm.h"
#include "mm_dramsim2.h"
#include <fesvr/dtm.h>
#include <iostream>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define MEM_SIZE_BITS 3
#define MEM_LEN_BITS 8
#define MEM_RESP_BITS 2
#include "emulator_type.h"
static dtm_t* dtm;
bool verbose;
void handle_sigterm(int sig)
{
dtm->stop();
}
int main(int argc, char** argv)
{
unsigned random_seed = (unsigned)time(NULL) ^ (unsigned)getpid();
uint64_t max_cycles = -1;
uint64_t trace_count = 0;
uint64_t start = 0;
int ret = 0;
const char* vcd = NULL;
const char* loadmem = NULL;
FILE *vcdfile = NULL;
bool dramsim2 = false;
bool print_cycles = false;
uint64_t memsz_mb = MEM_SIZE / (1024*1024);
mm_t *mm[N_MEM_CHANNELS];
for (int i = 1; i < argc; i++)
{
std::string arg = argv[i];
if (arg.substr(0, 2) == "-v")
vcd = argv[i]+2;
else if (arg.substr(0, 9) == "+memsize=")
memsz_mb = atoll(argv[i]+9);
else if (arg.substr(0, 2) == "-s")
random_seed = atoi(argv[i]+2);
else if (arg == "+dramsim")
dramsim2 = true;
else if (arg == "+verbose")
verbose = true;
else if (arg.substr(0, 12) == "+max-cycles=")
max_cycles = atoll(argv[i]+12);
else if (arg.substr(0, 9) == "+loadmem=")
loadmem = argv[i]+9;
else if (arg.substr(0, 7) == "+start=")
start = atoll(argv[i]+7);
else if (arg.substr(0, 12) == "+cycle-count")
print_cycles = true;
}
const int disasm_len = 24;
#ifndef VERILATOR
if (vcd)
{
// Create a VCD file
vcdfile = strcmp(vcd, "-") == 0 ? stdout : fopen(vcd, "w");
assert(vcdfile);
fprintf(vcdfile, "$scope module Testbench $end\n");
fprintf(vcdfile, "$var reg %d NDISASM_WB wb_instruction $end\n", disasm_len*8);
fprintf(vcdfile, "$var reg 64 NCYCLE cycle $end\n");
fprintf(vcdfile, "$upscope $end\n");
}
// The chisel generated code
Top_t tile;
tile.init(random_seed);
#else
VTop tile;
#if VM_TRACE
VerilatedVcdC *tfp = NULL;
if (vcd) {
tfp = new VerilatedVcdC;
Verilated::traceEverOn(true); // Verilator must compute traced signals
VL_PRINTF("Enabling waves... (%s)\n", vcd);
tile.trace(tfp, 99); // Trace 99 levels of hierarchy
tfp->open(vcd); // Open the dump file
}
#endif
#endif
srand(random_seed);
uint64_t mem_width = MEM_DATA_BITS / 8;
// Instantiate and initialize main memory
for (int i = 0; i < N_MEM_CHANNELS; i++) {
mm[i] = dramsim2 ? (mm_t*)(new mm_dramsim2_t) : (mm_t*)(new mm_magic_t);
try {
mm[i]->init(memsz_mb*1024*1024 / N_MEM_CHANNELS, mem_width, CACHE_BLOCK_BYTES);
} catch (const std::bad_alloc& e) {
fprintf(stderr,
"Failed to allocate %ld bytes (%ld MiB) of memory\n"
"Set smaller amount of memory using +memsize=<N> (in MiB)\n",
memsz_mb*1024*1024, memsz_mb);
exit(-1);
}
}
if (loadmem) {
void *mems[N_MEM_CHANNELS];
for (int i = 0; i < N_MEM_CHANNELS; i++)
mems[i] = mm[i]->get_data();
load_mem(mems, loadmem, CACHE_BLOCK_BYTES, N_MEM_CHANNELS);
}
dtm = new dtm_t(std::vector<std::string>(argv + 1, argv + argc));
signal(SIGTERM, handle_sigterm);
// reset for several cycles to handle pipelined reset
for (int i = 0; i < 10; i++) {
#ifndef VERILATOR
tile.clock_lo(LIT<1>(1));
tile.clock_hi(LIT<1>(1));
#else
tile.reset = 1;
tile.clk = 0;
tile.eval();
tile.clk = 1;
tile.eval();
tile.reset = 0;
#endif
}
bool_t *mem_ar_valid[N_MEM_CHANNELS];
bool_t *mem_ar_ready[N_MEM_CHANNELS];
mem_addr_t *mem_ar_bits_addr[N_MEM_CHANNELS];
mem_id_t *mem_ar_bits_id[N_MEM_CHANNELS];
mem_size_t *mem_ar_bits_size[N_MEM_CHANNELS];
mem_len_t *mem_ar_bits_len[N_MEM_CHANNELS];
bool_t *mem_aw_valid[N_MEM_CHANNELS];
bool_t *mem_aw_ready[N_MEM_CHANNELS];
mem_addr_t *mem_aw_bits_addr[N_MEM_CHANNELS];
mem_id_t *mem_aw_bits_id[N_MEM_CHANNELS];
mem_size_t *mem_aw_bits_size[N_MEM_CHANNELS];
mem_len_t *mem_aw_bits_len[N_MEM_CHANNELS];
bool_t *mem_w_valid[N_MEM_CHANNELS];
bool_t *mem_w_ready[N_MEM_CHANNELS];
mem_data_t *mem_w_bits_data[N_MEM_CHANNELS];
mem_strb_t *mem_w_bits_strb[N_MEM_CHANNELS];
bool_t *mem_w_bits_last[N_MEM_CHANNELS];
bool_t *mem_b_valid[N_MEM_CHANNELS];
bool_t *mem_b_ready[N_MEM_CHANNELS];
mem_resp_t *mem_b_bits_resp[N_MEM_CHANNELS];
mem_id_t *mem_b_bits_id[N_MEM_CHANNELS];
bool_t *mem_r_valid[N_MEM_CHANNELS];
bool_t *mem_r_ready[N_MEM_CHANNELS];
mem_resp_t *mem_r_bits_resp[N_MEM_CHANNELS];
mem_id_t *mem_r_bits_id[N_MEM_CHANNELS];
mem_data_t *mem_r_bits_data[N_MEM_CHANNELS];
bool_t *mem_r_bits_last[N_MEM_CHANNELS];
#include TBFRAG
while (!dtm->done() && (trace_count >> 1) < max_cycles && ret == 0)
{
for (int i = 0; i < N_MEM_CHANNELS; i++) {
value(mem_ar_ready[i]) = mm[i]->ar_ready();
value(mem_aw_ready[i]) = mm[i]->aw_ready();
value(mem_w_ready[i]) = mm[i]->w_ready();
value(mem_b_valid[i]) = mm[i]->b_valid();
value(mem_b_bits_resp[i]) = mm[i]->b_resp();
value(mem_b_bits_id[i]) = mm[i]->b_id();
value(mem_r_valid[i]) = mm[i]->r_valid();
value(mem_r_bits_resp[i]) = mm[i]->r_resp();
value(mem_r_bits_id[i]) = mm[i]->r_id();
value(mem_r_bits_last[i]) = mm[i]->r_last();
memcpy(values(mem_r_bits_data[i]), mm[i]->r_data(), mem_width);
}
value(field(io_debug_resp_ready)) = dtm->resp_ready();
value(field(io_debug_req_valid)) = dtm->req_valid();
value(field(io_debug_req_bits_addr)) = dtm->req_bits().addr;
value(field(io_debug_req_bits_op)) = dtm->req_bits().op;
value(field(io_debug_req_bits_data)) = dtm->req_bits().data;
try {
#ifndef VERILATOR
tile.clock_lo(LIT<1>(0));
#else
tile.clk = 0;
tile.eval();
// make sure we dump on cycle 0 to get dump_init
#if VM_TRACE
if (tfp && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tfp->dump(trace_count);
#endif
#endif
trace_count++;
} catch (std::runtime_error& e) {
max_cycles = trace_count >> 1; // terminate cleanly after this cycle
ret = 1;
std::cerr << e.what() << std::endl;
}
dtm_t::resp debug_resp_bits;
debug_resp_bits.resp = value(field(io_debug_resp_bits_resp));
debug_resp_bits.data = value(field(io_debug_resp_bits_data));
dtm->tick(
value(field(io_debug_req_ready)),
value(field(io_debug_resp_valid)),
debug_resp_bits
);
for (int i = 0; i < N_MEM_CHANNELS; i++) {
mm[i]->tick(
value(mem_ar_valid[i]),
value(mem_ar_bits_addr[i]) - MEM_BASE,
value(mem_ar_bits_id[i]),
value(mem_ar_bits_size[i]),
value(mem_ar_bits_len[i]),
value(mem_aw_valid[i]),
value(mem_aw_bits_addr[i]) - MEM_BASE,
value(mem_aw_bits_id[i]),
value(mem_aw_bits_size[i]),
value(mem_aw_bits_len[i]),
value(mem_w_valid[i]),
value(mem_w_bits_strb[i]),
values(mem_w_bits_data[i]),
value(mem_w_bits_last[i]),
value(mem_r_ready[i]),
value(mem_b_ready[i])
);
}
#ifndef VERILATOR
if (verbose && (trace_count >> 1) >= start)
tile.print(stderr);
// make sure we dump on cycle 0 to get dump_init
if (vcd && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tile.dump(vcdfile, trace_count >> 1);
tile.clock_hi(LIT<1>(0));
#else
tile.clk = 1;
tile.eval();
#if VM_TRACE
if (tfp && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tfp->dump(trace_count);
#endif
#endif
trace_count++;
}
#ifndef VERILATOR
if (vcd) fclose(vcdfile);
#else
#if VM_TRACE
if (tfp) tfp->close();
delete tfp;
#endif
#endif
if (dtm->exit_code())
{
fprintf(stderr, "*** FAILED *** (code = %d, seed %d) after %ld cycles\n", dtm->exit_code(), random_seed, trace_count >> 1);
ret = dtm->exit_code();
}
else if ((trace_count >> 1) == max_cycles)
{
fprintf(stderr, "*** FAILED *** (timeout, seed %d) after %ld cycles\n", random_seed, trace_count >> 1);
ret = 2;
}
else if (verbose || print_cycles)
{
fprintf(stderr, "Completed after %ld cycles\n", trace_count >> 1);
}
delete dtm;
return ret;
}