1
0
rocket-chip/rocket/src/main/scala/nbdcache.scala

1243 lines
46 KiB
Scala

// See LICENSE for license details.
package rocket
import Chisel._
import junctions._
import uncore.tilelink._
import uncore.coherence._
import uncore.agents._
import uncore.util._
import uncore.constants._
import cde.{Parameters, Field}
import Util._
case object WordBits extends Field[Int]
case object StoreDataQueueDepth extends Field[Int]
case object ReplayQueueDepth extends Field[Int]
case object NMSHRs extends Field[Int]
case object LRSCCycles extends Field[Int]
trait HasL1HellaCacheParameters extends HasL1CacheParameters {
val wordBits = p(WordBits)
val wordBytes = wordBits/8
val wordOffBits = log2Up(wordBytes)
val beatBytes = p(CacheBlockBytes) / outerDataBeats
val beatWords = beatBytes / wordBytes
val beatOffBits = log2Up(beatBytes)
val idxMSB = untagBits-1
val idxLSB = blockOffBits
val offsetmsb = idxLSB-1
val offsetlsb = wordOffBits
val rowWords = rowBits/wordBits
val doNarrowRead = coreDataBits * nWays % rowBits == 0
val encDataBits = code.width(coreDataBits)
val encRowBits = encDataBits*rowWords
val sdqDepth = p(StoreDataQueueDepth)
val nMSHRs = p(NMSHRs)
val nIOMSHRs = 1
val lrscCycles = p(LRSCCycles)
require(lrscCycles >= 32) // ISA requires 16-insn LRSC sequences to succeed
require(isPow2(nSets))
require(rowBits <= outerDataBits)
require(!usingVM || untagBits <= pgIdxBits)
}
abstract class L1HellaCacheModule(implicit val p: Parameters) extends Module
with HasL1HellaCacheParameters
abstract class L1HellaCacheBundle(implicit val p: Parameters) extends junctions.ParameterizedBundle()(p)
with HasL1HellaCacheParameters
trait HasCoreMemOp extends HasCoreParameters {
val addr = UInt(width = coreMaxAddrBits)
val tag = Bits(width = dcacheReqTagBits)
val cmd = Bits(width = M_SZ)
val typ = Bits(width = MT_SZ)
}
trait HasCoreData extends HasCoreParameters {
val data = Bits(width = coreDataBits)
}
trait HasSDQId extends HasL1HellaCacheParameters {
val sdq_id = UInt(width = log2Up(sdqDepth))
}
trait HasMissInfo extends HasL1HellaCacheParameters {
val tag_match = Bool()
val old_meta = new L1Metadata
val way_en = Bits(width = nWays)
}
class HellaCacheReqInternal(implicit p: Parameters) extends L1HellaCacheBundle()(p)
with HasCoreMemOp {
val phys = Bool()
}
class HellaCacheReq(implicit p: Parameters) extends HellaCacheReqInternal()(p) with HasCoreData
class HellaCacheResp(implicit p: Parameters) extends L1HellaCacheBundle()(p)
with HasCoreMemOp
with HasCoreData {
val replay = Bool()
val has_data = Bool()
val data_word_bypass = Bits(width = coreDataBits)
val store_data = Bits(width = coreDataBits)
}
class AlignmentExceptions extends Bundle {
val ld = Bool()
val st = Bool()
}
class HellaCacheExceptions extends Bundle {
val ma = new AlignmentExceptions
val pf = new AlignmentExceptions
}
// interface between D$ and processor/DTLB
class HellaCacheIO(implicit p: Parameters) extends CoreBundle()(p) {
val req = Decoupled(new HellaCacheReq)
val s1_kill = Bool(OUTPUT) // kill previous cycle's req
val s1_data = Bits(OUTPUT, coreDataBits) // data for previous cycle's req
val s2_nack = Bool(INPUT) // req from two cycles ago is rejected
val resp = Valid(new HellaCacheResp).flip
val replay_next = Bool(INPUT)
val xcpt = (new HellaCacheExceptions).asInput
val invalidate_lr = Bool(OUTPUT)
val ordered = Bool(INPUT)
}
class L1DataReadReq(implicit p: Parameters) extends L1HellaCacheBundle()(p) {
val way_en = Bits(width = nWays)
val addr = Bits(width = untagBits)
}
class L1DataWriteReq(implicit p: Parameters) extends L1DataReadReq()(p) {
val wmask = Bits(width = rowWords)
val data = Bits(width = encRowBits)
}
class L1RefillReq(implicit p: Parameters) extends L1DataReadReq()(p)
class L1MetaReadReq(implicit p: Parameters) extends MetaReadReq {
val tag = Bits(width = tagBits)
override def cloneType = new L1MetaReadReq()(p).asInstanceOf[this.type] //TODO remove
}
class L1MetaWriteReq(implicit p: Parameters) extends
MetaWriteReq[L1Metadata](new L1Metadata)
object L1Metadata {
def apply(tag: Bits, coh: ClientMetadata)(implicit p: Parameters) = {
val meta = Wire(new L1Metadata)
meta.tag := tag
meta.coh := coh
meta
}
}
class L1Metadata(implicit p: Parameters) extends Metadata()(p) with HasL1HellaCacheParameters {
val coh = new ClientMetadata
}
class Replay(implicit p: Parameters) extends HellaCacheReqInternal()(p) with HasCoreData
class ReplayInternal(implicit p: Parameters) extends HellaCacheReqInternal()(p) with HasSDQId
class MSHRReq(implicit p: Parameters) extends Replay()(p) with HasMissInfo
class MSHRReqInternal(implicit p: Parameters) extends ReplayInternal()(p) with HasMissInfo
class ProbeInternal(implicit p: Parameters) extends Probe()(p) with HasClientTransactionId
class WritebackReq(implicit p: Parameters) extends Release()(p) with HasCacheParameters {
val way_en = Bits(width = nWays)
}
class IOMSHR(id: Int)(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val req = Decoupled(new HellaCacheReq).flip
val acquire = Decoupled(new Acquire)
val grant = Valid(new GrantFromSrc).flip
val finish = Decoupled(new FinishToDst)
val resp = Decoupled(new HellaCacheResp)
val replay_next = Bool(OUTPUT)
}
def beatOffset(addr: UInt) = addr.extract(beatOffBits - 1, wordOffBits)
def wordFromBeat(addr: UInt, dat: UInt) = {
val shift = Cat(beatOffset(addr), UInt(0, wordOffBits + log2Up(wordBytes)))
(dat >> shift)(wordBits - 1, 0)
}
val req = Reg(new HellaCacheReq)
val req_cmd_sc = req.cmd === M_XSC
val grant_word = Reg(UInt(width = wordBits))
val fq = Module(new FinishQueue(1))
val s_idle :: s_acquire :: s_grant :: s_resp :: s_finish :: Nil = Enum(Bits(), 5)
val state = Reg(init = s_idle)
io.req.ready := (state === s_idle)
fq.io.enq.valid := io.grant.valid && io.grant.bits.requiresAck()
fq.io.enq.bits := io.grant.bits.makeFinish()
io.finish.valid := fq.io.deq.valid && (state === s_finish)
io.finish.bits := fq.io.deq.bits
fq.io.deq.ready := io.finish.ready && (state === s_finish)
val storegen = new StoreGen(req.typ, req.addr, req.data, wordBytes)
val loadgen = new LoadGen(req.typ, mtSigned(req.typ), req.addr, grant_word, req_cmd_sc, wordBytes)
val beat_mask = (storegen.mask << Cat(beatOffset(req.addr), UInt(0, wordOffBits)))
val beat_data = Fill(beatWords, storegen.data)
val addr_block = req.addr(paddrBits - 1, blockOffBits)
val addr_beat = req.addr(blockOffBits - 1, beatOffBits)
val addr_byte = req.addr(beatOffBits - 1, 0)
val get_acquire = Get(
client_xact_id = UInt(id),
addr_block = addr_block,
addr_beat = addr_beat,
addr_byte = addr_byte,
operand_size = req.typ,
alloc = Bool(false))
val put_acquire = Put(
client_xact_id = UInt(id),
addr_block = addr_block,
addr_beat = addr_beat,
data = beat_data,
wmask = Some(beat_mask),
alloc = Bool(false))
val putAtomic_acquire = PutAtomic(
client_xact_id = UInt(id),
addr_block = addr_block,
addr_beat = addr_beat,
addr_byte = addr_byte,
atomic_opcode = req.cmd,
operand_size = req.typ,
data = beat_data)
io.acquire.valid := (state === s_acquire)
io.acquire.bits := Mux(isAMO(req.cmd), putAtomic_acquire, Mux(isRead(req.cmd), get_acquire, put_acquire))
io.replay_next := (state === s_grant) || io.resp.valid && !io.resp.ready
io.resp.valid := (state === s_resp)
io.resp.bits := req
io.resp.bits.has_data := isRead(req.cmd)
io.resp.bits.data := loadgen.data | req_cmd_sc
io.resp.bits.store_data := req.data
io.resp.bits.replay := Bool(true)
when (io.req.fire()) {
req := io.req.bits
state := s_acquire
}
when (io.acquire.fire()) {
state := s_grant
}
when (state === s_grant && io.grant.valid) {
state := s_resp
when (isRead(req.cmd)) {
grant_word := wordFromBeat(req.addr, io.grant.bits.data)
}
}
when (io.resp.fire()) {
state := s_finish
}
when (io.finish.fire()) {
state := s_idle
}
}
class MSHR(id: Int)(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val req_pri_val = Bool(INPUT)
val req_pri_rdy = Bool(OUTPUT)
val req_sec_val = Bool(INPUT)
val req_sec_rdy = Bool(OUTPUT)
val req_bits = new MSHRReqInternal().asInput
val idx_match = Bool(OUTPUT)
val tag = Bits(OUTPUT, tagBits)
val mem_req = Decoupled(new Acquire)
val refill = new L1RefillReq().asOutput // Data is bypassed
val meta_read = Decoupled(new L1MetaReadReq)
val meta_write = Decoupled(new L1MetaWriteReq)
val replay = Decoupled(new ReplayInternal)
val mem_grant = Valid(new GrantFromSrc).flip
val mem_finish = Decoupled(new FinishToDst)
val wb_req = Decoupled(new WritebackReq)
val probe_rdy = Bool(OUTPUT)
}
val s_invalid :: s_wb_req :: s_wb_resp :: s_meta_clear :: s_refill_req :: s_refill_resp :: s_meta_write_req :: s_meta_write_resp :: s_drain_rpq :: Nil = Enum(UInt(), 9)
val state = Reg(init=s_invalid)
def stateIsOneOf(check_states: Seq[UInt]): Bool =
check_states.map(state === _).reduce(_ || _)
def stateIsOneOf(st1: UInt, st2: UInt*): Bool =
stateIsOneOf(st1 +: st2)
val new_coh_state = Reg(init=ClientMetadata.onReset)
val req = Reg(new MSHRReqInternal())
val req_idx = req.addr(untagBits-1,blockOffBits)
val idx_match = req_idx === io.req_bits.addr(untagBits-1,blockOffBits)
// We only accept secondary misses if we haven't yet sent an Acquire to outer memory
// or if the Acquire that was sent will obtain a Grant with sufficient permissions
// to let us replay this new request. I.e. we don't handle multiple outstanding
// Acquires on the same block for now.
val cmd_requires_second_acquire =
req.old_meta.coh.requiresAcquireOnSecondaryMiss(req.cmd, io.req_bits.cmd)
// Track whether or not a secondary acquire will cause the coherence state
// to go from clean to dirty.
val dirties_coh = Reg(Bool())
val states_before_refill = Seq(s_wb_req, s_wb_resp, s_meta_clear)
val gnt_multi_data = io.mem_grant.bits.hasMultibeatData()
val (refill_cnt, refill_count_done) = Counter(io.mem_grant.valid && gnt_multi_data, refillCycles)
val refill_done = io.mem_grant.valid && (!gnt_multi_data || refill_count_done)
val sec_rdy = idx_match &&
(stateIsOneOf(states_before_refill) ||
(stateIsOneOf(s_refill_req, s_refill_resp) &&
!cmd_requires_second_acquire && !refill_done))
val rpq = Module(new Queue(new ReplayInternal, p(ReplayQueueDepth)))
rpq.io.enq.valid := (io.req_pri_val && io.req_pri_rdy || io.req_sec_val && sec_rdy) && !isPrefetch(io.req_bits.cmd)
rpq.io.enq.bits := io.req_bits
rpq.io.deq.ready := io.replay.ready && state === s_drain_rpq || state === s_invalid
val coh_on_grant = req.old_meta.coh.onGrant(
incoming = io.mem_grant.bits,
pending = Mux(dirties_coh, M_XWR, req.cmd))
val coh_on_hit = io.req_bits.old_meta.coh.onHit(io.req_bits.cmd)
when (state === s_drain_rpq && !rpq.io.deq.valid) {
state := s_invalid
}
when (state === s_meta_write_resp) {
// this wait state allows us to catch RAW hazards on the tags via nack_victim
state := s_drain_rpq
}
when (state === s_meta_write_req && io.meta_write.ready) {
state := s_meta_write_resp
}
when (state === s_refill_resp && refill_done) {
state := s_meta_write_req
new_coh_state := coh_on_grant
}
when (io.mem_req.fire()) { // s_refill_req
state := s_refill_resp
}
when (state === s_meta_clear && io.meta_write.ready) {
state := s_refill_req
}
when (state === s_wb_resp && io.mem_grant.valid) {
state := s_meta_clear
}
when (io.wb_req.fire()) { // s_wb_req
state := Mux(io.wb_req.bits.requiresAck(), s_wb_resp, s_meta_clear)
}
when (io.req_sec_val && io.req_sec_rdy) { // s_wb_req, s_wb_resp, s_refill_req
//If we get a secondary miss that needs more permissions before we've sent
// out the primary miss's Acquire, we can upgrade the permissions we're
// going to ask for in s_refill_req
when(cmd_requires_second_acquire) {
req.cmd := io.req_bits.cmd
}
dirties_coh := dirties_coh || isWrite(io.req_bits.cmd)
}
when (io.req_pri_val && io.req_pri_rdy) {
val coh = io.req_bits.old_meta.coh
req := io.req_bits
dirties_coh := isWrite(io.req_bits.cmd)
when (io.req_bits.tag_match) {
when(coh.isHit(io.req_bits.cmd)) { // set dirty bit
state := s_meta_write_req
new_coh_state := coh_on_hit
}.otherwise { // upgrade permissions
state := s_refill_req
}
}.otherwise { // writback if necessary and refill
state := Mux(coh.requiresVoluntaryWriteback(), s_wb_req, s_meta_clear)
}
}
val fq = Module(new FinishQueue(1))
val g = io.mem_grant.bits
val can_finish = state === s_invalid || state === s_refill_req
fq.io.enq.valid := io.mem_grant.valid && g.requiresAck() && refill_done
fq.io.enq.bits := g.makeFinish()
io.mem_finish.valid := fq.io.deq.valid && can_finish
fq.io.deq.ready := io.mem_finish.ready && can_finish
io.mem_finish.bits := fq.io.deq.bits
io.idx_match := (state =/= s_invalid) && idx_match
io.refill.way_en := req.way_en
io.refill.addr := ((req_idx << log2Ceil(refillCycles)) | refill_cnt) << rowOffBits
io.tag := req.addr >> untagBits
io.req_pri_rdy := state === s_invalid
io.req_sec_rdy := sec_rdy && rpq.io.enq.ready
val meta_hazard = Reg(init=UInt(0,2))
when (meta_hazard =/= UInt(0)) { meta_hazard := meta_hazard + 1 }
when (io.meta_write.fire()) { meta_hazard := 1 }
io.probe_rdy := !idx_match || (!stateIsOneOf(states_before_refill) && meta_hazard === 0)
io.meta_write.valid := state === s_meta_write_req || state === s_meta_clear
io.meta_write.bits.idx := req_idx
io.meta_write.bits.data.coh := Mux(state === s_meta_clear,
req.old_meta.coh.onCacheControl(M_FLUSH),
new_coh_state)
io.meta_write.bits.data.tag := io.tag
io.meta_write.bits.way_en := req.way_en
io.wb_req.valid := state === s_wb_req
io.wb_req.bits := req.old_meta.coh.makeVoluntaryWriteback(
client_xact_id = UInt(id),
addr_block = Cat(req.old_meta.tag, req_idx))
io.wb_req.bits.way_en := req.way_en
io.mem_req.valid := state === s_refill_req && fq.io.enq.ready
io.mem_req.bits := req.old_meta.coh.makeAcquire(
addr_block = Cat(io.tag, req_idx),
client_xact_id = Bits(id),
op_code = req.cmd)
io.meta_read.valid := state === s_drain_rpq
io.meta_read.bits.idx := req_idx
io.meta_read.bits.tag := io.tag
io.replay.valid := state === s_drain_rpq && rpq.io.deq.valid
io.replay.bits := rpq.io.deq.bits
io.replay.bits.phys := Bool(true)
io.replay.bits.addr := Cat(io.tag, req_idx, rpq.io.deq.bits.addr(blockOffBits-1,0))
when (!io.meta_read.ready) {
rpq.io.deq.ready := Bool(false)
io.replay.bits.cmd := M_FLUSH_ALL /* nop */
}
}
class MSHRFile(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val req = Decoupled(new MSHRReq).flip
val resp = Decoupled(new HellaCacheResp)
val secondary_miss = Bool(OUTPUT)
val mem_req = Decoupled(new Acquire)
val refill = new L1RefillReq().asOutput
val meta_read = Decoupled(new L1MetaReadReq)
val meta_write = Decoupled(new L1MetaWriteReq)
val replay = Decoupled(new Replay)
val mem_grant = Valid(new GrantFromSrc).flip
val mem_finish = Decoupled(new FinishToDst)
val wb_req = Decoupled(new WritebackReq)
val probe_rdy = Bool(OUTPUT)
val fence_rdy = Bool(OUTPUT)
val replay_next = Bool(OUTPUT)
}
// determine if the request is cacheable or not
val cacheable = addrMap.isCacheable(io.req.bits.addr)
val sdq_val = Reg(init=Bits(0, sdqDepth))
val sdq_alloc_id = PriorityEncoder(~sdq_val(sdqDepth-1,0))
val sdq_rdy = !sdq_val.andR
val sdq_enq = io.req.valid && io.req.ready && cacheable && isWrite(io.req.bits.cmd)
val sdq = Mem(sdqDepth, io.req.bits.data)
when (sdq_enq) { sdq(sdq_alloc_id) := io.req.bits.data }
val idxMatch = Wire(Vec(nMSHRs, Bool()))
val tagList = Wire(Vec(nMSHRs, Bits(width = tagBits)))
val tag_match = Mux1H(idxMatch, tagList) === io.req.bits.addr >> untagBits
val wbTagList = Wire(Vec(nMSHRs, Bits()))
val refillMux = Wire(Vec(nMSHRs, new L1RefillReq))
val meta_read_arb = Module(new Arbiter(new L1MetaReadReq, nMSHRs))
val meta_write_arb = Module(new Arbiter(new L1MetaWriteReq, nMSHRs))
val mem_req_arb = Module(new LockingArbiter(
new Acquire,
nMSHRs + nIOMSHRs,
outerDataBeats,
Some((a: Acquire) => a.hasMultibeatData())))
val mem_finish_arb = Module(new Arbiter(new FinishToDst, nMSHRs + nIOMSHRs))
val wb_req_arb = Module(new Arbiter(new WritebackReq, nMSHRs))
val replay_arb = Module(new Arbiter(new ReplayInternal, nMSHRs))
val alloc_arb = Module(new Arbiter(Bool(), nMSHRs))
var idx_match = Bool(false)
var pri_rdy = Bool(false)
var sec_rdy = Bool(false)
io.fence_rdy := true
io.probe_rdy := true
for (i <- 0 until nMSHRs) {
val mshr = Module(new MSHR(i))
idxMatch(i) := mshr.io.idx_match
tagList(i) := mshr.io.tag
wbTagList(i) := mshr.io.wb_req.bits.addr_block >> idxBits
alloc_arb.io.in(i).valid := mshr.io.req_pri_rdy
mshr.io.req_pri_val := alloc_arb.io.in(i).ready
mshr.io.req_sec_val := io.req.valid && sdq_rdy && tag_match
mshr.io.req_bits := io.req.bits
mshr.io.req_bits.sdq_id := sdq_alloc_id
meta_read_arb.io.in(i) <> mshr.io.meta_read
meta_write_arb.io.in(i) <> mshr.io.meta_write
mem_req_arb.io.in(i) <> mshr.io.mem_req
mem_finish_arb.io.in(i) <> mshr.io.mem_finish
wb_req_arb.io.in(i) <> mshr.io.wb_req
replay_arb.io.in(i) <> mshr.io.replay
mshr.io.mem_grant.valid := io.mem_grant.valid &&
io.mem_grant.bits.client_xact_id === UInt(i)
mshr.io.mem_grant.bits := io.mem_grant.bits
refillMux(i) := mshr.io.refill
pri_rdy = pri_rdy || mshr.io.req_pri_rdy
sec_rdy = sec_rdy || mshr.io.req_sec_rdy
idx_match = idx_match || mshr.io.idx_match
when (!mshr.io.req_pri_rdy) { io.fence_rdy := false }
when (!mshr.io.probe_rdy) { io.probe_rdy := false }
}
alloc_arb.io.out.ready := io.req.valid && sdq_rdy && cacheable && !idx_match
io.meta_read <> meta_read_arb.io.out
io.meta_write <> meta_write_arb.io.out
io.mem_req <> mem_req_arb.io.out
io.mem_finish <> mem_finish_arb.io.out
io.wb_req <> wb_req_arb.io.out
val mmio_alloc_arb = Module(new Arbiter(Bool(), nIOMSHRs))
val resp_arb = Module(new Arbiter(new HellaCacheResp, nIOMSHRs))
var mmio_rdy = Bool(false)
io.replay_next := Bool(false)
for (i <- 0 until nIOMSHRs) {
val id = nMSHRs + i
val mshr = Module(new IOMSHR(id))
mmio_alloc_arb.io.in(i).valid := mshr.io.req.ready
mshr.io.req.valid := mmio_alloc_arb.io.in(i).ready
mshr.io.req.bits := io.req.bits
mmio_rdy = mmio_rdy || mshr.io.req.ready
mem_req_arb.io.in(id) <> mshr.io.acquire
mem_finish_arb.io.in(id) <> mshr.io.finish
mshr.io.grant.bits := io.mem_grant.bits
mshr.io.grant.valid := io.mem_grant.valid &&
io.mem_grant.bits.client_xact_id === UInt(id)
resp_arb.io.in(i) <> mshr.io.resp
when (!mshr.io.req.ready) { io.fence_rdy := Bool(false) }
when (mshr.io.replay_next) { io.replay_next := Bool(true) }
}
mmio_alloc_arb.io.out.ready := io.req.valid && !cacheable
io.resp <> resp_arb.io.out
io.req.ready := Mux(!cacheable, mmio_rdy,
Mux(idx_match, tag_match && sec_rdy, pri_rdy) && sdq_rdy)
io.secondary_miss := idx_match
io.refill := refillMux(io.mem_grant.bits.client_xact_id)
val free_sdq = io.replay.fire() && isWrite(io.replay.bits.cmd)
io.replay.bits.data := sdq(RegEnable(replay_arb.io.out.bits.sdq_id, free_sdq))
io.replay <> replay_arb.io.out
when (io.replay.valid || sdq_enq) {
sdq_val := sdq_val & ~(UIntToOH(replay_arb.io.out.bits.sdq_id) & Fill(sdqDepth, free_sdq)) |
PriorityEncoderOH(~sdq_val(sdqDepth-1,0)) & Fill(sdqDepth, sdq_enq)
}
}
class WritebackUnit(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val req = Decoupled(new WritebackReq).flip
val meta_read = Decoupled(new L1MetaReadReq)
val data_req = Decoupled(new L1DataReadReq)
val data_resp = Bits(INPUT, encRowBits)
val release = Decoupled(new Release)
}
val active = Reg(init=Bool(false))
val r1_data_req_fired = Reg(init=Bool(false))
val r2_data_req_fired = Reg(init=Bool(false))
val data_req_cnt = Reg(init = UInt(0, width = log2Up(refillCycles+1))) //TODO Zero width
val buf_v = (if(refillCyclesPerBeat > 1) Reg(init=Bits(0, width = refillCyclesPerBeat-1)) else Bits(1))
val beat_done = buf_v.andR
val (beat_cnt, all_beats_done) = Counter(io.release.fire(), outerDataBeats)
val req = Reg(new WritebackReq)
io.release.valid := false
when (active) {
r1_data_req_fired := false
r2_data_req_fired := r1_data_req_fired
when (io.data_req.fire() && io.meta_read.fire()) {
r1_data_req_fired := true
data_req_cnt := data_req_cnt + 1
}
when (r2_data_req_fired) {
io.release.valid := beat_done
when(beat_done) {
when(!io.release.ready) {
r1_data_req_fired := false
r2_data_req_fired := false
data_req_cnt := data_req_cnt - Mux[UInt](Bool(refillCycles > 1) && r1_data_req_fired, 2, 1)
} .otherwise { if(refillCyclesPerBeat > 1) buf_v := 0 }
}
when(!r1_data_req_fired) {
// We're done if this is the final data request and the Release can be sent
active := data_req_cnt < UInt(refillCycles) || !io.release.ready
}
}
}
when (io.req.fire()) {
active := true
data_req_cnt := 0
if(refillCyclesPerBeat > 1) buf_v := 0
req := io.req.bits
}
io.req.ready := !active
val req_idx = req.addr_block(idxBits-1, 0)
val fire = active && data_req_cnt < UInt(refillCycles)
// We reissue the meta read as it sets up the mux ctrl for s2_data_muxed
io.meta_read.valid := fire
io.meta_read.bits.idx := req_idx
io.meta_read.bits.tag := req.addr_block >> idxBits
io.data_req.valid := fire
io.data_req.bits.way_en := req.way_en
io.data_req.bits.addr := (if(refillCycles > 1)
Cat(req_idx, data_req_cnt(log2Up(refillCycles)-1,0))
else req_idx) << rowOffBits
io.release.bits := req
io.release.bits.addr_beat := beat_cnt
io.release.bits.data := (if(refillCyclesPerBeat > 1) {
// If the cache rows are narrower than a TLDataBeat,
// then buffer enough data_resps to make a whole beat
val data_buf = Reg(Bits())
when(active && r2_data_req_fired && !beat_done) {
data_buf := Cat(io.data_resp, data_buf((refillCyclesPerBeat)*encRowBits-1, encRowBits))
buf_v := (if(refillCyclesPerBeat > 2)
Cat(UInt(1), buf_v(refillCyclesPerBeat-2,1))
else UInt(1))
}
Cat(io.data_resp, data_buf)
} else { io.data_resp })
}
class ProbeUnit(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val req = Decoupled(new ProbeInternal).flip
val rep = Decoupled(new Release)
val meta_read = Decoupled(new L1MetaReadReq)
val meta_write = Decoupled(new L1MetaWriteReq)
val wb_req = Decoupled(new WritebackReq)
val way_en = Bits(INPUT, nWays)
val mshr_rdy = Bool(INPUT)
val block_state = new ClientMetadata().asInput
}
val (s_invalid :: s_meta_read :: s_meta_resp :: s_mshr_req ::
s_mshr_resp :: s_release :: s_writeback_req :: s_writeback_resp ::
s_meta_write :: Nil) = Enum(UInt(), 9)
val state = Reg(init=s_invalid)
val old_coh = Reg(new ClientMetadata)
val way_en = Reg(Bits())
val req = Reg(new ProbeInternal)
val tag_matches = way_en.orR
val miss_coh = ClientMetadata.onReset
val reply_coh = Mux(tag_matches, old_coh, miss_coh)
val reply = reply_coh.makeRelease(req)
io.req.ready := state === s_invalid
io.rep.valid := state === s_release
io.rep.bits := reply
assert(!io.rep.valid || !io.rep.bits.hasData(),
"ProbeUnit should not send releases with data")
io.meta_read.valid := state === s_meta_read
io.meta_read.bits.idx := req.addr_block
io.meta_read.bits.tag := req.addr_block >> idxBits
io.meta_write.valid := state === s_meta_write
io.meta_write.bits.way_en := way_en
io.meta_write.bits.idx := req.addr_block
io.meta_write.bits.data.tag := req.addr_block >> idxBits
io.meta_write.bits.data.coh := old_coh.onProbe(req)
io.wb_req.valid := state === s_writeback_req
io.wb_req.bits := reply
io.wb_req.bits.way_en := way_en
// state === s_invalid
when (io.req.fire()) {
state := s_meta_read
req := io.req.bits
}
// state === s_meta_read
when (io.meta_read.fire()) {
state := s_meta_resp
}
// we need to wait one cycle for the metadata to be read from the array
when (state === s_meta_resp) {
state := s_mshr_req
}
when (state === s_mshr_req) {
state := s_mshr_resp
old_coh := io.block_state
way_en := io.way_en
// if the read didn't go through, we need to retry
when (!io.mshr_rdy) { state := s_meta_read }
}
when (state === s_mshr_resp) {
val needs_writeback = tag_matches && old_coh.requiresVoluntaryWriteback()
state := Mux(needs_writeback, s_writeback_req, s_release)
}
when (state === s_release && io.rep.ready) {
state := Mux(tag_matches, s_meta_write, s_invalid)
}
// state === s_writeback_req
when (io.wb_req.fire()) {
state := s_writeback_resp
}
// wait for the writeback request to finish before updating the metadata
when (state === s_writeback_resp && io.wb_req.ready) {
state := s_meta_write
}
when (io.meta_write.fire()) {
state := s_invalid
}
}
class DataArray(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val read = Decoupled(new L1DataReadReq).flip
val write = Decoupled(new L1DataWriteReq).flip
val resp = Vec(nWays, Bits(OUTPUT, encRowBits))
}
val waddr = io.write.bits.addr >> rowOffBits
val raddr = io.read.bits.addr >> rowOffBits
if (doNarrowRead) {
for (w <- 0 until nWays by rowWords) {
val wway_en = io.write.bits.way_en(w+rowWords-1,w)
val rway_en = io.read.bits.way_en(w+rowWords-1,w)
val resp = Wire(Vec(rowWords, Bits(width = encRowBits)))
val r_raddr = RegEnable(io.read.bits.addr, io.read.valid)
for (p <- 0 until resp.size) {
val array = SeqMem(nSets*refillCycles, Vec(rowWords, Bits(width=encDataBits)))
when (wway_en.orR && io.write.valid && io.write.bits.wmask(p)) {
val data = Vec.fill(rowWords)(io.write.bits.data(encDataBits*(p+1)-1,encDataBits*p))
array.write(waddr, data, wway_en.toBools)
}
resp(p) := array.read(raddr, rway_en.orR && io.read.valid).asUInt
}
for (dw <- 0 until rowWords) {
val r = Vec(resp.map(_(encDataBits*(dw+1)-1,encDataBits*dw)))
val resp_mux =
if (r.size == 1) r
else Vec(r(r_raddr(rowOffBits-1,wordOffBits)), r.tail:_*)
io.resp(w+dw) := resp_mux.asUInt
}
}
} else {
for (w <- 0 until nWays) {
val array = SeqMem(nSets*refillCycles, Vec(rowWords, Bits(width=encDataBits)))
when (io.write.bits.way_en(w) && io.write.valid) {
val data = Vec.tabulate(rowWords)(i => io.write.bits.data(encDataBits*(i+1)-1,encDataBits*i))
array.write(waddr, data, io.write.bits.wmask.toBools)
}
io.resp(w) := array.read(raddr, io.read.bits.way_en(w) && io.read.valid).asUInt
}
}
io.read.ready := Bool(true)
io.write.ready := Bool(true)
}
class HellaCache(implicit p: Parameters) extends L1HellaCacheModule()(p) {
val io = new Bundle {
val cpu = (new HellaCacheIO).flip
val ptw = new TLBPTWIO()
val mem = new ClientTileLinkIO
}
require(isPow2(nWays)) // TODO: relax this
val wb = Module(new WritebackUnit)
val prober = Module(new ProbeUnit)
val mshrs = Module(new MSHRFile)
io.cpu.req.ready := Bool(true)
val s1_valid = Reg(next=io.cpu.req.fire(), init=Bool(false))
val s1_req = Reg(io.cpu.req.bits)
val s1_valid_masked = s1_valid && !io.cpu.s1_kill && !io.cpu.xcpt.asUInt.orR
val s1_replay = Reg(init=Bool(false))
val s1_clk_en = Reg(Bool())
val s2_valid = Reg(next=s1_valid_masked, init=Bool(false))
val s2_req = Reg(io.cpu.req.bits)
val s2_replay = Reg(next=s1_replay, init=Bool(false)) && s2_req.cmd =/= M_FLUSH_ALL
val s2_recycle = Wire(Bool())
val s2_valid_masked = Wire(Bool())
val s3_valid = Reg(init=Bool(false))
val s3_req = Reg(io.cpu.req.bits)
val s3_way = Reg(Bits())
val s1_recycled = RegEnable(s2_recycle, Bool(false), s1_clk_en)
val s1_read = isRead(s1_req.cmd)
val s1_write = isWrite(s1_req.cmd)
val s1_readwrite = s1_read || s1_write || isPrefetch(s1_req.cmd)
val dtlb = Module(new TLB)
io.ptw <> dtlb.io.ptw
dtlb.io.req.valid := s1_valid_masked && s1_readwrite
dtlb.io.req.bits.passthrough := s1_req.phys
dtlb.io.req.bits.vpn := s1_req.addr >> pgIdxBits
dtlb.io.req.bits.instruction := Bool(false)
dtlb.io.req.bits.store := s1_write
when (!dtlb.io.req.ready && !io.cpu.req.bits.phys) { io.cpu.req.ready := Bool(false) }
when (io.cpu.req.valid) {
s1_req := io.cpu.req.bits
}
when (wb.io.meta_read.valid) {
s1_req.addr := Cat(wb.io.meta_read.bits.tag, wb.io.meta_read.bits.idx) << blockOffBits
s1_req.phys := Bool(true)
}
when (prober.io.meta_read.valid) {
s1_req.addr := Cat(prober.io.meta_read.bits.tag, prober.io.meta_read.bits.idx) << blockOffBits
s1_req.phys := Bool(true)
}
when (mshrs.io.replay.valid) {
s1_req := mshrs.io.replay.bits
}
when (s2_recycle) {
s1_req := s2_req
}
val s1_addr = Cat(dtlb.io.resp.ppn, s1_req.addr(pgIdxBits-1,0))
when (s1_clk_en) {
s2_req.typ := s1_req.typ
s2_req.phys := s1_req.phys
s2_req.addr := s1_addr
when (s1_write) {
s2_req.data := Mux(s1_replay, mshrs.io.replay.bits.data, io.cpu.s1_data)
}
when (s1_recycled) { s2_req.data := s1_req.data }
s2_req.tag := s1_req.tag
s2_req.cmd := s1_req.cmd
}
val misaligned = new StoreGen(s1_req.typ, s1_req.addr, UInt(0), wordBytes).misaligned
io.cpu.xcpt.ma.ld := s1_read && misaligned
io.cpu.xcpt.ma.st := s1_write && misaligned
io.cpu.xcpt.pf.ld := s1_read && dtlb.io.resp.xcpt_ld
io.cpu.xcpt.pf.st := s1_write && dtlb.io.resp.xcpt_st
// tags
def onReset = L1Metadata(UInt(0), ClientMetadata.onReset)
val meta = Module(new MetadataArray(onReset _))
val metaReadArb = Module(new Arbiter(new MetaReadReq, 5))
val metaWriteArb = Module(new Arbiter(new L1MetaWriteReq, 2))
meta.io.read <> metaReadArb.io.out
meta.io.write <> metaWriteArb.io.out
// data
val data = Module(new DataArray)
val readArb = Module(new Arbiter(new L1DataReadReq, 4))
val writeArb = Module(new Arbiter(new L1DataWriteReq, 2))
data.io.write.valid := writeArb.io.out.valid
writeArb.io.out.ready := data.io.write.ready
data.io.write.bits := writeArb.io.out.bits
val wdata_encoded = (0 until rowWords).map(i => code.encode(writeArb.io.out.bits.data(coreDataBits*(i+1)-1,coreDataBits*i)))
data.io.write.bits.data := wdata_encoded.asUInt
// tag read for new requests
metaReadArb.io.in(4).valid := io.cpu.req.valid
metaReadArb.io.in(4).bits.idx := io.cpu.req.bits.addr >> blockOffBits
when (!metaReadArb.io.in(4).ready) { io.cpu.req.ready := Bool(false) }
// data read for new requests
readArb.io.in(3).valid := io.cpu.req.valid
readArb.io.in(3).bits.addr := io.cpu.req.bits.addr
readArb.io.in(3).bits.way_en := ~UInt(0, nWays)
when (!readArb.io.in(3).ready) { io.cpu.req.ready := Bool(false) }
// recycled requests
metaReadArb.io.in(0).valid := s2_recycle
metaReadArb.io.in(0).bits.idx := s2_req.addr >> blockOffBits
readArb.io.in(0).valid := s2_recycle
readArb.io.in(0).bits.addr := s2_req.addr
readArb.io.in(0).bits.way_en := ~UInt(0, nWays)
// tag check and way muxing
def wayMap[T <: Data](f: Int => T) = Vec((0 until nWays).map(f))
val s1_tag_eq_way = wayMap((w: Int) => meta.io.resp(w).tag === (s1_addr >> untagBits)).asUInt
val s1_tag_match_way = wayMap((w: Int) => s1_tag_eq_way(w) && meta.io.resp(w).coh.isValid()).asUInt
s1_clk_en := metaReadArb.io.out.valid //TODO: should be metaReadArb.io.out.fire(), but triggers Verilog backend bug
val s1_writeback = s1_clk_en && !s1_valid && !s1_replay
val s2_tag_match_way = RegEnable(s1_tag_match_way, s1_clk_en)
val s2_tag_match = s2_tag_match_way.orR
val s2_hit_state = Mux1H(s2_tag_match_way, wayMap((w: Int) => RegEnable(meta.io.resp(w).coh, s1_clk_en)))
val s2_hit = s2_tag_match &&
s2_hit_state.isHit(s2_req.cmd) &&
s2_hit_state === s2_hit_state.onHit(s2_req.cmd)
// load-reserved/store-conditional
val lrsc_count = Reg(init=UInt(0))
val lrsc_valid = lrsc_count.orR
val lrsc_addr = Reg(UInt())
val (s2_lr, s2_sc) = (s2_req.cmd === M_XLR, s2_req.cmd === M_XSC)
val s2_lrsc_addr_match = lrsc_valid && lrsc_addr === (s2_req.addr >> blockOffBits)
val s2_sc_fail = s2_sc && !s2_lrsc_addr_match
when (lrsc_valid) { lrsc_count := lrsc_count - 1 }
when (s2_valid_masked && s2_hit || s2_replay) {
when (s2_lr) {
when (!lrsc_valid) { lrsc_count := lrscCycles-1 }
lrsc_addr := s2_req.addr >> blockOffBits
}
when (s2_sc) {
lrsc_count := 0
}
}
when (io.cpu.invalidate_lr) { lrsc_count := 0 }
val s2_data = Wire(Vec(nWays, Bits(width=encRowBits)))
for (w <- 0 until nWays) {
val regs = Reg(Vec(rowWords, Bits(width = encDataBits)))
val en1 = s1_clk_en && s1_tag_eq_way(w)
for (i <- 0 until regs.size) {
val en = en1 && ((Bool(i == 0) || !Bool(doNarrowRead)) || s1_writeback)
when (en) { regs(i) := data.io.resp(w) >> encDataBits*i }
}
s2_data(w) := regs.asUInt
}
val s2_data_muxed = Mux1H(s2_tag_match_way, s2_data)
val s2_data_decoded = (0 until rowWords).map(i => code.decode(s2_data_muxed(encDataBits*(i+1)-1,encDataBits*i)))
val s2_data_corrected = s2_data_decoded.map(_.corrected).asUInt
val s2_data_uncorrected = s2_data_decoded.map(_.uncorrected).asUInt
val s2_word_idx = if(doNarrowRead) UInt(0) else s2_req.addr(log2Up(rowWords*coreDataBytes)-1,log2Up(wordBytes))
val s2_data_correctable = s2_data_decoded.map(_.correctable).asUInt()(s2_word_idx)
// store/amo hits
s3_valid := (s2_valid_masked && s2_hit || s2_replay) && !s2_sc_fail && isWrite(s2_req.cmd)
val amoalu = Module(new AMOALU)
when ((s2_valid || s2_replay) && (isWrite(s2_req.cmd) || s2_data_correctable)) {
s3_req := s2_req
s3_req.data := Mux(s2_data_correctable, s2_data_corrected, amoalu.io.out)
s3_way := s2_tag_match_way
}
writeArb.io.in(0).bits.addr := s3_req.addr
writeArb.io.in(0).bits.wmask := UIntToOH(s3_req.addr.extract(rowOffBits-1,offsetlsb))
writeArb.io.in(0).bits.data := Fill(rowWords, s3_req.data)
writeArb.io.in(0).valid := s3_valid
writeArb.io.in(0).bits.way_en := s3_way
// replacement policy
val replacer = p(Replacer)()
val s1_replaced_way_en = UIntToOH(replacer.way)
val s2_replaced_way_en = UIntToOH(RegEnable(replacer.way, s1_clk_en))
val s2_repl_meta = Mux1H(s2_replaced_way_en, wayMap((w: Int) => RegEnable(meta.io.resp(w), s1_clk_en && s1_replaced_way_en(w))).toSeq)
// miss handling
mshrs.io.req.valid := s2_valid_masked && !s2_hit && (isPrefetch(s2_req.cmd) || isRead(s2_req.cmd) || isWrite(s2_req.cmd))
mshrs.io.req.bits := s2_req
mshrs.io.req.bits.tag_match := s2_tag_match
mshrs.io.req.bits.old_meta := Mux(s2_tag_match, L1Metadata(s2_repl_meta.tag, s2_hit_state), s2_repl_meta)
mshrs.io.req.bits.way_en := Mux(s2_tag_match, s2_tag_match_way, s2_replaced_way_en)
mshrs.io.req.bits.data := s2_req.data
when (mshrs.io.req.fire()) { replacer.miss }
io.mem.acquire <> mshrs.io.mem_req
// replays
readArb.io.in(1).valid := mshrs.io.replay.valid
readArb.io.in(1).bits := mshrs.io.replay.bits
readArb.io.in(1).bits.way_en := ~UInt(0, nWays)
mshrs.io.replay.ready := readArb.io.in(1).ready
s1_replay := mshrs.io.replay.valid && readArb.io.in(1).ready
metaReadArb.io.in(1) <> mshrs.io.meta_read
metaWriteArb.io.in(0) <> mshrs.io.meta_write
// probes and releases
val releaseArb = Module(new LockingArbiter(
new Release, 2, outerDataBeats,
Some((r: Release) => r.hasMultibeatData())))
io.mem.release <> releaseArb.io.out
prober.io.req.valid := io.mem.probe.valid && !lrsc_valid
io.mem.probe.ready := prober.io.req.ready && !lrsc_valid
prober.io.req.bits := io.mem.probe.bits
releaseArb.io.in(1) <> prober.io.rep
prober.io.way_en := s2_tag_match_way
prober.io.block_state := s2_hit_state
metaReadArb.io.in(2) <> prober.io.meta_read
metaWriteArb.io.in(1) <> prober.io.meta_write
prober.io.mshr_rdy := mshrs.io.probe_rdy
// refills
val narrow_grant = FlowThroughSerializer(io.mem.grant, refillCyclesPerBeat)
mshrs.io.mem_grant.valid := narrow_grant.fire()
mshrs.io.mem_grant.bits := narrow_grant.bits
narrow_grant.ready := writeArb.io.in(1).ready || !narrow_grant.bits.hasData()
/* The last clause here is necessary in order to prevent the responses for
* the IOMSHRs from being written into the data array. It works because the
* IOMSHR ids start right the ones for the regular MSHRs. */
writeArb.io.in(1).valid := narrow_grant.valid && narrow_grant.bits.hasData() &&
narrow_grant.bits.client_xact_id < UInt(nMSHRs)
writeArb.io.in(1).bits.addr := mshrs.io.refill.addr
writeArb.io.in(1).bits.way_en := mshrs.io.refill.way_en
writeArb.io.in(1).bits.wmask := ~UInt(0, rowWords)
writeArb.io.in(1).bits.data := narrow_grant.bits.data(encRowBits-1,0)
data.io.read <> readArb.io.out
readArb.io.out.ready := !narrow_grant.valid || narrow_grant.ready // insert bubble if refill gets blocked
io.mem.finish <> mshrs.io.mem_finish
// writebacks
val wbArb = Module(new Arbiter(new WritebackReq, 2))
wbArb.io.in(0) <> prober.io.wb_req
wbArb.io.in(1) <> mshrs.io.wb_req
wb.io.req <> wbArb.io.out
metaReadArb.io.in(3) <> wb.io.meta_read
readArb.io.in(2) <> wb.io.data_req
wb.io.data_resp := s2_data_corrected
releaseArb.io.in(0) <> wb.io.release
// store->load bypassing
val s4_valid = Reg(next=s3_valid, init=Bool(false))
val s4_req = RegEnable(s3_req, s3_valid && metaReadArb.io.out.valid)
val bypasses = List(
((s2_valid_masked || s2_replay) && !s2_sc_fail, s2_req, amoalu.io.out),
(s3_valid, s3_req, s3_req.data),
(s4_valid, s4_req, s4_req.data)
).map(r => (r._1 && (s1_addr >> wordOffBits === r._2.addr >> wordOffBits) && isWrite(r._2.cmd), r._3))
val s2_store_bypass_data = Reg(Bits(width = coreDataBits))
val s2_store_bypass = Reg(Bool())
when (s1_clk_en) {
s2_store_bypass := false
when (bypasses.map(_._1).reduce(_||_)) {
s2_store_bypass_data := PriorityMux(bypasses)
s2_store_bypass := true
}
}
// load data subword mux/sign extension
val s2_data_word_prebypass = s2_data_uncorrected >> Cat(s2_word_idx, Bits(0,log2Up(coreDataBits)))
val s2_data_word = Mux(s2_store_bypass, s2_store_bypass_data, s2_data_word_prebypass)
val loadgen = new LoadGen(s2_req.typ, mtSigned(s2_req.typ), s2_req.addr, s2_data_word, s2_sc, wordBytes)
amoalu.io.addr := s2_req.addr
amoalu.io.cmd := s2_req.cmd
amoalu.io.typ := s2_req.typ
amoalu.io.lhs := s2_data_word
amoalu.io.rhs := s2_req.data
// nack it like it's hot
val s1_nack = dtlb.io.req.valid && dtlb.io.resp.miss ||
s1_req.addr(idxMSB,idxLSB) === prober.io.meta_write.bits.idx && !prober.io.req.ready
val s2_nack_hit = RegEnable(s1_nack, s1_valid || s1_replay)
when (s2_nack_hit) { mshrs.io.req.valid := Bool(false) }
val s2_nack_victim = s2_hit && mshrs.io.secondary_miss
val s2_nack_miss = !s2_hit && !mshrs.io.req.ready
val s2_nack = s2_nack_hit || s2_nack_victim || s2_nack_miss
s2_valid_masked := s2_valid && !s2_nack
val s2_recycle_ecc = (s2_valid || s2_replay) && s2_hit && s2_data_correctable
val s2_recycle_next = Reg(init=Bool(false))
when (s1_valid || s1_replay) { s2_recycle_next := s2_recycle_ecc }
s2_recycle := s2_recycle_ecc || s2_recycle_next
// after a nack, block until nack condition resolves to save energy
val block_miss = Reg(init=Bool(false))
block_miss := (s2_valid || block_miss) && s2_nack_miss
when (block_miss) {
io.cpu.req.ready := Bool(false)
}
val cache_resp = Wire(Valid(new HellaCacheResp))
cache_resp.valid := (s2_replay || s2_valid_masked && s2_hit) && !s2_data_correctable
cache_resp.bits := s2_req
cache_resp.bits.has_data := isRead(s2_req.cmd)
cache_resp.bits.data := loadgen.data | s2_sc_fail
cache_resp.bits.store_data := s2_req.data
cache_resp.bits.replay := s2_replay
val uncache_resp = Wire(Valid(new HellaCacheResp))
uncache_resp.bits := mshrs.io.resp.bits
uncache_resp.valid := mshrs.io.resp.valid
mshrs.io.resp.ready := Reg(next= !(s1_valid || s1_replay))
io.cpu.s2_nack := s2_valid && s2_nack
io.cpu.resp := Mux(mshrs.io.resp.ready, uncache_resp, cache_resp)
io.cpu.resp.bits.data_word_bypass := loadgen.wordData
io.cpu.ordered := mshrs.io.fence_rdy && !s1_valid && !s2_valid
io.cpu.replay_next := (s1_replay && s1_read) || mshrs.io.replay_next
}
/**
* This module buffers requests made by the SimpleHellaCacheIF in case they
* are nacked. Nacked requests must be replayed in order, and no other requests
* must be allowed to go through until the replayed requests are successfully
* completed.
*/
class SimpleHellaCacheIFReplayQueue(depth: Int)
(implicit val p: Parameters) extends Module
with HasL1HellaCacheParameters {
val io = new Bundle {
val req = Decoupled(new HellaCacheReq).flip
val nack = Valid(Bits(width = coreDCacheReqTagBits)).flip
val resp = Valid(new HellaCacheResp).flip
val replay = Decoupled(new HellaCacheReq)
}
// Registers to store the sent request
// When a request is sent the first time,
// it is stored in one of the reqs registers
// and the corresponding inflight bit is set.
// The reqs register will be deallocated once the request is
// successfully completed.
val inflight = Reg(init = UInt(0, depth))
val reqs = Reg(Vec(depth, new HellaCacheReq))
// The nack queue stores the index of nacked requests (in the reqs vector)
// in the order that they were nacked. A request is enqueued onto nackq
// when it is newly nacked (i.e. not a nack for a previous replay).
// The head of the nack queue will be replayed until it is
// successfully completed, at which time the request is dequeued.
// No new requests will be made or other replays attempted until the head
// of the nackq is successfully completed.
val nackq = Module(new Queue(UInt(width = log2Up(depth)), depth))
val replaying = Reg(init = Bool(false))
val next_inflight_onehot = PriorityEncoderOH(~inflight)
val next_inflight = OHToUInt(next_inflight_onehot)
val next_replay = nackq.io.deq.bits
val next_replay_onehot = UIntToOH(next_replay)
val next_replay_req = reqs(next_replay)
// Keep sending the head of the nack queue until it succeeds
io.replay.valid := nackq.io.deq.valid && !replaying
io.replay.bits := next_replay_req
// Don't allow new requests if there is are replays waiting
// or something being nacked.
io.req.ready := !inflight.andR && !nackq.io.deq.valid && !io.nack.valid
// Match on the tags to determine the index of nacks or responses
val nack_onehot = Cat(reqs.map(_.tag === io.nack.bits).reverse) & inflight
val resp_onehot = Cat(reqs.map(_.tag === io.resp.bits.tag).reverse) & inflight
val replay_complete = io.resp.valid && replaying && io.resp.bits.tag === next_replay_req.tag
val nack_head = io.nack.valid && nackq.io.deq.valid && io.nack.bits === next_replay_req.tag
// Enqueue to the nack queue if there is a nack that is not in response to
// the previous replay
nackq.io.enq.valid := io.nack.valid && !nack_head
nackq.io.enq.bits := OHToUInt(nack_onehot)
assert(!nackq.io.enq.valid || nackq.io.enq.ready,
"SimpleHellaCacheIF: ReplayQueue nack queue overflow")
// Dequeue from the nack queue if the last replay was successfully completed
nackq.io.deq.ready := replay_complete
assert(!nackq.io.deq.ready || nackq.io.deq.valid,
"SimpleHellaCacheIF: ReplayQueue nack queue underflow")
// Set inflight bit when a request is made
// Clear it when it is successfully completed
inflight := (inflight | Mux(io.req.fire(), next_inflight_onehot, UInt(0))) &
~Mux(io.resp.valid, resp_onehot, UInt(0))
when (io.req.fire()) {
reqs(next_inflight) := io.req.bits
}
// Only one replay outstanding at a time
when (io.replay.fire()) { replaying := Bool(true) }
when (nack_head || replay_complete) { replaying := Bool(false) }
}
// exposes a sane decoupled request interface
class SimpleHellaCacheIF(implicit p: Parameters) extends Module
{
val io = new Bundle {
val requestor = new HellaCacheIO().flip
val cache = new HellaCacheIO
}
val replayq = Module(new SimpleHellaCacheIFReplayQueue(2))
val req_arb = Module(new Arbiter(new HellaCacheReq, 2))
val req_helper = DecoupledHelper(
req_arb.io.in(1).ready,
replayq.io.req.ready,
io.requestor.req.valid)
req_arb.io.in(0) <> replayq.io.replay
req_arb.io.in(1).valid := req_helper.fire(req_arb.io.in(1).ready)
req_arb.io.in(1).bits := io.requestor.req.bits
io.requestor.req.ready := req_helper.fire(io.requestor.req.valid)
replayq.io.req.valid := req_helper.fire(replayq.io.req.ready)
replayq.io.req.bits := io.requestor.req.bits
val s0_req_fire = io.cache.req.fire()
val s1_req_fire = Reg(next = s0_req_fire)
val s2_req_fire = Reg(next = s1_req_fire)
val s1_req_tag = Reg(next = io.cache.req.bits.tag)
val s2_req_tag = Reg(next = s1_req_tag)
val s2_kill = Reg(next = io.cache.s1_kill)
io.cache.invalidate_lr := io.requestor.invalidate_lr
io.cache.req <> req_arb.io.out
io.cache.req.bits.phys := Bool(true)
io.cache.s1_kill := io.cache.s2_nack
io.cache.s1_data := RegEnable(req_arb.io.out.bits.data, s0_req_fire)
replayq.io.nack.valid := (io.cache.s2_nack || s2_kill) && s2_req_fire
replayq.io.nack.bits := s2_req_tag
replayq.io.resp := io.cache.resp
io.requestor.resp := io.cache.resp
assert(!Reg(next = io.cache.req.fire()) ||
!(io.cache.xcpt.ma.ld || io.cache.xcpt.ma.st ||
io.cache.xcpt.pf.ld || io.cache.xcpt.pf.st),
"SimpleHellaCacheIF exception")
}