1
0
rocket-chip/csrc/emulator.cc

253 lines
7.5 KiB
C++

// See LICENSE for license details.
#include "htif_emulator.h"
#include "emulator.h"
#include "mm.h"
#include "mm_dramsim2.h"
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define MEM_SIZE_BITS 3
#define MEM_LEN_BITS 8
#define MEM_RESP_BITS 2
htif_emulator_t* htif;
void handle_sigterm(int sig)
{
htif->stop();
}
int main(int argc, char** argv)
{
unsigned random_seed = (unsigned)time(NULL) ^ (unsigned)getpid();
uint64_t max_cycles = -1;
uint64_t trace_count = 0;
uint64_t start = 0;
int ret = 0;
const char* vcd = NULL;
const char* loadmem = NULL;
FILE *vcdfile = NULL;
bool dramsim2 = false;
bool log = false;
bool print_cycles = false;
uint64_t memsz_mb = MEM_SIZE / (1024*1024);
mm_t *mm[N_MEM_CHANNELS];
for (int i = 1; i < argc; i++)
{
std::string arg = argv[i];
if (arg.substr(0, 2) == "-v")
vcd = argv[i]+2;
else if (arg.substr(0, 9) == "+memsize=")
memsz_mb = atoll(argv[i]+9);
else if (arg.substr(0, 2) == "-s")
random_seed = atoi(argv[i]+2);
else if (arg == "+dramsim")
dramsim2 = true;
else if (arg == "+verbose")
log = true;
else if (arg.substr(0, 12) == "+max-cycles=")
max_cycles = atoll(argv[i]+12);
else if (arg.substr(0, 9) == "+loadmem=")
loadmem = argv[i]+9;
else if (arg.substr(0, 7) == "+start=")
start = atoll(argv[i]+7);
else if (arg.substr(0, 12) == "+cycle-count")
print_cycles = true;
}
const int disasm_len = 24;
if (vcd)
{
// Create a VCD file
vcdfile = strcmp(vcd, "-") == 0 ? stdout : fopen(vcd, "w");
assert(vcdfile);
fprintf(vcdfile, "$scope module Testbench $end\n");
fprintf(vcdfile, "$var reg %d NDISASM_WB wb_instruction $end\n", disasm_len*8);
fprintf(vcdfile, "$var reg 64 NCYCLE cycle $end\n");
fprintf(vcdfile, "$upscope $end\n");
}
// The chisel generated code
Top_t tile;
srand(random_seed);
tile.init(random_seed);
uint64_t mem_width = MEM_DATA_BITS / 8;
// Instantiate and initialize main memory
for (int i = 0; i < N_MEM_CHANNELS; i++) {
mm[i] = dramsim2 ? (mm_t*)(new mm_dramsim2_t) : (mm_t*)(new mm_magic_t);
try {
mm[i]->init(memsz_mb*1024*1024 / N_MEM_CHANNELS, mem_width, CACHE_BLOCK_BYTES);
} catch (const std::bad_alloc& e) {
fprintf(stderr,
"Failed to allocate %ld bytes (%ld MiB) of memory\n"
"Set smaller amount of memory using +memsize=<N> (in MiB)\n",
memsz_mb*1024*1024, memsz_mb);
exit(-1);
}
}
if (loadmem) {
void *mems[N_MEM_CHANNELS];
for (int i = 0; i < N_MEM_CHANNELS; i++)
mems[i] = mm[i]->get_data();
load_mem(mems, loadmem, CACHE_BLOCK_BYTES, N_MEM_CHANNELS);
}
// Instantiate HTIF
htif = new htif_emulator_t(memsz_mb,
std::vector<std::string>(argv + 1, argv + argc));
int htif_bits = tile.Top__io_host_in_bits.width();
assert(htif_bits % 8 == 0 && htif_bits <= val_n_bits());
signal(SIGTERM, handle_sigterm);
// reset for one host_clk cycle to handle pipelined reset
tile.Top__io_host_in_valid = LIT<1>(0);
tile.Top__io_host_out_ready = LIT<1>(0);
tile.Top__io_mem_backup_ctrl_en = LIT<1>(0);
for (int i = 0; i < 3; i += tile.Top__io_host_clk_edge.to_bool())
{
tile.clock_lo(LIT<1>(1));
tile.clock_hi(LIT<1>(1));
}
dat_t<1> *mem_ar_valid[N_MEM_CHANNELS];
dat_t<1> *mem_ar_ready[N_MEM_CHANNELS];
dat_t<MEM_ADDR_BITS> *mem_ar_bits_addr[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_ar_bits_id[N_MEM_CHANNELS];
dat_t<MEM_SIZE_BITS> *mem_ar_bits_size[N_MEM_CHANNELS];
dat_t<MEM_LEN_BITS> *mem_ar_bits_len[N_MEM_CHANNELS];
dat_t<1> *mem_aw_valid[N_MEM_CHANNELS];
dat_t<1> *mem_aw_ready[N_MEM_CHANNELS];
dat_t<MEM_ADDR_BITS> *mem_aw_bits_addr[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_aw_bits_id[N_MEM_CHANNELS];
dat_t<MEM_SIZE_BITS> *mem_aw_bits_size[N_MEM_CHANNELS];
dat_t<MEM_LEN_BITS> *mem_aw_bits_len[N_MEM_CHANNELS];
dat_t<1> *mem_w_valid[N_MEM_CHANNELS];
dat_t<1> *mem_w_ready[N_MEM_CHANNELS];
dat_t<MEM_DATA_BITS> *mem_w_bits_data[N_MEM_CHANNELS];
dat_t<MEM_STRB_BITS> *mem_w_bits_strb[N_MEM_CHANNELS];
dat_t<1> *mem_w_bits_last[N_MEM_CHANNELS];
dat_t<1> *mem_b_valid[N_MEM_CHANNELS];
dat_t<1> *mem_b_ready[N_MEM_CHANNELS];
dat_t<MEM_RESP_BITS> *mem_b_bits_resp[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_b_bits_id[N_MEM_CHANNELS];
dat_t<1> *mem_r_valid[N_MEM_CHANNELS];
dat_t<1> *mem_r_ready[N_MEM_CHANNELS];
dat_t<MEM_RESP_BITS> *mem_r_bits_resp[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_r_bits_id[N_MEM_CHANNELS];
dat_t<MEM_DATA_BITS> *mem_r_bits_data[N_MEM_CHANNELS];
dat_t<1> *mem_r_bits_last[N_MEM_CHANNELS];
#include TBFRAG
while (!htif->done() && trace_count < max_cycles && ret == 0)
{
for (int i = 0; i < N_MEM_CHANNELS; i++) {
*mem_ar_ready[i] = LIT<1>(mm[i]->ar_ready());
*mem_aw_ready[i] = LIT<1>(mm[i]->aw_ready());
*mem_w_ready[i] = LIT<1>(mm[i]->w_ready());
*mem_b_valid[i] = LIT<1>(mm[i]->b_valid());
*mem_b_bits_resp[i] = LIT<64>(mm[i]->b_resp());
*mem_b_bits_id[i] = LIT<64>(mm[i]->b_id());
*mem_r_valid[i] = LIT<1>(mm[i]->r_valid());
*mem_r_bits_resp[i] = LIT<64>(mm[i]->r_resp());
*mem_r_bits_id[i] = LIT<64>(mm[i]->r_id());
*mem_r_bits_last[i] = LIT<1>(mm[i]->r_last());
memcpy(mem_r_bits_data[i]->values, mm[i]->r_data(), mem_width);
}
try {
tile.clock_lo(LIT<1>(0));
} catch (std::runtime_error& e) {
max_cycles = trace_count; // terminate cleanly after this cycle
ret = 1;
std::cerr << e.what() << std::endl;
}
for (int i = 0; i < N_MEM_CHANNELS; i++) {
mm[i]->tick(
mem_ar_valid[i]->to_bool(),
mem_ar_bits_addr[i]->lo_word(),
mem_ar_bits_id[i]->lo_word(),
mem_ar_bits_size[i]->lo_word(),
mem_ar_bits_len[i]->lo_word(),
mem_aw_valid[i]->to_bool(),
mem_aw_bits_addr[i]->lo_word(),
mem_aw_bits_id[i]->lo_word(),
mem_aw_bits_size[i]->lo_word(),
mem_aw_bits_len[i]->lo_word(),
mem_w_valid[i]->to_bool(),
mem_w_bits_strb[i]->lo_word(),
mem_w_bits_data[i]->values,
mem_w_bits_last[i]->to_bool(),
mem_r_ready[i]->to_bool(),
mem_b_ready[i]->to_bool()
);
}
if (tile.Top__io_host_clk_edge.to_bool())
{
static bool htif_in_valid = false;
static val_t htif_in_bits;
if (tile.Top__io_host_in_ready.to_bool() || !htif_in_valid)
htif_in_valid = htif->recv_nonblocking(&htif_in_bits, htif_bits/8);
tile.Top__io_host_in_valid = LIT<1>(htif_in_valid);
tile.Top__io_host_in_bits = LIT<64>(htif_in_bits);
if (tile.Top__io_host_out_valid.to_bool())
htif->send(tile.Top__io_host_out_bits.values, htif_bits/8);
tile.Top__io_host_out_ready = LIT<1>(1);
}
if (log && trace_count >= start)
tile.print(stderr);
// make sure we dump on cycle 0 to get dump_init
if (vcd && (trace_count == 0 || trace_count >= start))
tile.dump(vcdfile, trace_count);
tile.clock_hi(LIT<1>(0));
trace_count++;
}
if (vcd)
fclose(vcdfile);
if (htif->exit_code())
{
fprintf(stderr, "*** FAILED *** (code = %d, seed %d) after %ld cycles\n", htif->exit_code(), random_seed, trace_count);
ret = htif->exit_code();
}
else if (trace_count == max_cycles)
{
fprintf(stderr, "*** FAILED *** (timeout, seed %d) after %ld cycles\n", random_seed, trace_count);
ret = 2;
}
else if (log || print_cycles)
{
fprintf(stderr, "Completed after %ld cycles\n", trace_count);
}
delete htif;
return ret;
}