// See LICENSE for license details. package uncore.tilelink2 import Chisel._ case class RegReadFn private(combinational: Boolean, fn: (Bool, Bool) => (Bool, Bool, UInt)) object RegReadFn { // (ivalid: Bool, oready: Bool) => (iready: Bool, ovalid: Bool, data: UInt) // iready may combinationally depend on oready // all other combinational dependencies forbidden (e.g. ovalid <= ivalid) // effects must become visible on the cycle after ovalid && oready implicit def apply(x: (Bool, Bool) => (Bool, Bool, UInt)) = new RegReadFn(false, x) // (ready: Bool) => (valid: Bool, data: UInt) // valid must not combinationally depend on ready // effects must become visible on the cycle after valid && ready // ready is only guaranteed to stay high if fed by an Irrevocable (eg: TL2 or concurrency > 0) // ... which is irrelevant if you can service the read immediately // ... if irrevocable, you may start reading on rising ready and raise valid when done // ... otherwise, use the more general in&out ready-valid method above implicit def apply(x: Bool => (Bool, UInt)) = new RegReadFn(true, { case (_, oready) => val (ovalid, data) = x(oready) (Bool(true), ovalid, data) }) // read from a DecoupledIO (only safe if there is a consistent source of data) implicit def apply(x: DecoupledIO[UInt]):RegReadFn = RegReadFn(ready => { x.ready := ready; (x.valid, x.bits) }) // read from a register implicit def apply(x: UInt):RegReadFn = RegReadFn(ready => (Bool(true), x)) // noop implicit def apply(x: Unit):RegReadFn = RegReadFn(UInt(0)) } case class RegWriteFn private(combinational: Boolean, fn: (Bool, Bool, UInt) => (Bool, Bool)) object RegWriteFn { // (ivalid: Bool, oready: Bool, data: UInt) => (iready: Bool, ovalid: Bool) // iready may combinationally depend on both oready and data // all other combinational dependencies forbidden (e.g. ovalid <= ivalid) // effects must become visible on the cycle after ovalid && oready implicit def apply(x: (Bool, Bool, UInt) => (Bool, Bool)) = new RegWriteFn(false, x) // (valid: Bool, data: UInt) => (ready: Bool) // ready may combinationally depend on data (but not valid) // effects must become visible on the cycle after valid && ready // valid is only guaranteed to stay high if fed by an Irrevocable (eg: TL2 or concurrency > 0) // ... which is irrelevant if you can service the write immediately // ... if irrevocable, you may start writing on rising valid and raise ready when done // ... otherwise, use the more general in&out ready-valid method above implicit def apply(x: (Bool, UInt) => Bool) = // combinational => data valid on oready new RegWriteFn(true, { case (_, oready, data) => (Bool(true), x(oready, data)) }) // write to a DecoupledIO (only safe if there is a consistent sink draining data) implicit def apply(x: DecoupledIO[UInt]): RegWriteFn = RegWriteFn((valid, data) => { x.valid := valid; x.bits := data; x.ready }) // updates a register implicit def apply(x: UInt): RegWriteFn = RegWriteFn((valid, data) => { when (valid) { x := data }; Bool(true) }) // noop implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { Bool(true) }) } case class RegField(width: Int, read: RegReadFn, write: RegWriteFn) { require (width > 0) def pipelined = !read.combinational || !write.combinational } object RegField { type Map = (Int, Seq[RegField]) def apply(n: Int) : RegField = apply(n, (), ()) def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw) def R(n: Int, r: RegReadFn) : RegField = apply(n, r, ()) def W(n: Int, w: RegWriteFn) : RegField = apply(n, (), w) } trait HasRegMap { def regmap(mapping: RegField.Map*): Unit } // See GPIO.scala for an example of how to use regmap