// See LICENSE.Berkeley for license details. // See LICENSE.SiFive for license details. package rocket import Chisel._ import config._ import diplomacy._ import tile._ import uncore.tilelink2._ import uncore.util.Code import util._ import Chisel.ImplicitConversions._ case class ICacheParams( nSets: Int = 64, nWays: Int = 4, rowBits: Int = 128, nTLBEntries: Int = 32, cacheIdBits: Int = 0, ecc: Option[Code] = None, itimAddr: Option[BigInt] = None, blockBytes: Int = 64) extends L1CacheParams { def replacement = new RandomReplacement(nWays) } trait HasL1ICacheParameters extends HasL1CacheParameters with HasCoreParameters { val cacheParams = tileParams.icache.get } class ICacheReq(implicit p: Parameters) extends CoreBundle()(p) with HasL1ICacheParameters { val addr = UInt(width = vaddrBits) } class ICache(val latency: Int, val hartid: Int)(implicit p: Parameters) extends LazyModule with HasRocketCoreParameters { lazy val module = new ICacheModule(this) val masterNode = TLClientNode(TLClientParameters(sourceId = IdRange(0,1))) val icacheParams = tileParams.icache.get val size = icacheParams.nSets * icacheParams.nWays * icacheParams.blockBytes val slaveNode = icacheParams.itimAddr.map { itimAddr => val wordBytes = coreInstBytes * fetchWidth TLManagerNode(Seq(TLManagerPortParameters( Seq(TLManagerParameters( address = Seq(AddressSet(itimAddr, size-1)), regionType = RegionType.UNCACHED, executable = true, supportsPutFull = TransferSizes(1, wordBytes), supportsGet = TransferSizes(1, wordBytes), fifoId = Some(0))), // requests handled in FIFO order beatBytes = wordBytes, minLatency = 1))) } } class ICacheBundle(outer: ICache) extends CoreBundle()(outer.p) { val hartid = UInt(INPUT, hartIdLen) val req = Decoupled(new ICacheReq).flip val s1_paddr = UInt(INPUT, paddrBits) // delayed one cycle w.r.t. req val s2_vaddr = UInt(INPUT, vaddrBits) // delayed two cycles w.r.t. req val s1_kill = Bool(INPUT) // delayed one cycle w.r.t. req val s2_kill = Bool(INPUT) // delayed two cycles; prevents I$ miss emission val resp = Valid(UInt(width = coreInstBits * fetchWidth)) val invalidate = Bool(INPUT) val tl_out = outer.masterNode.bundleOut val tl_in = outer.slaveNode.map(_.bundleIn) } // get a tile-specific property without breaking deduplication object GetPropertyByHartId { def apply[T <: Data](tiles: Seq[RocketTileParams], f: RocketTileParams => Option[T], hartId: UInt): T = { PriorityMux(tiles.zipWithIndex.collect { case (t, i) if f(t).nonEmpty => (hartId === i) -> f(t).get }) } } class ICacheModule(outer: ICache) extends LazyModuleImp(outer) with HasL1ICacheParameters { val io = new ICacheBundle(outer) val edge_out = outer.masterNode.edgesOut.head val tl_out = io.tl_out.head val edge_in = outer.slaveNode.map(_.edgesIn.head) val tl_in = io.tl_in.map(_.head) require(isPow2(nSets) && isPow2(nWays)) require(isPow2(coreInstBytes)) require(!usingVM || pgIdxBits >= untagBits) val scratchpadOn = RegInit(false.B) val scratchpadMax = tl_in.map(tl => Reg(UInt(width = log2Ceil(nSets * (nWays - 1))))) def lineInScratchpad(line: UInt) = scratchpadMax.map(scratchpadOn && line <= _).getOrElse(false.B) def addrMaybeInScratchpad(addr: UInt) = if (outer.icacheParams.itimAddr.isEmpty) false.B else { val base = GetPropertyByHartId(p(coreplex.RocketTilesKey), _.icache.flatMap(_.itimAddr.map(_.U)), io.hartid) addr >= base && addr < base + outer.size } def addrInScratchpad(addr: UInt) = addrMaybeInScratchpad(addr) && lineInScratchpad(addr(untagBits+log2Ceil(nWays)-1, blockOffBits)) def scratchpadWay(addr: UInt) = addr.extract(untagBits+log2Ceil(nWays)-1, untagBits) def scratchpadWayValid(way: UInt) = way < nWays - 1 def scratchpadLine(addr: UInt) = addr(untagBits+log2Ceil(nWays)-1, blockOffBits) val s0_slaveValid = tl_in.map(_.a.fire()).getOrElse(false.B) val s1_slaveValid = RegNext(s0_slaveValid, false.B) val s2_slaveValid = RegNext(s1_slaveValid, false.B) val s3_slaveValid = RegNext(s2_slaveValid, false.B) val s_ready :: s_request :: s_refill :: Nil = Enum(UInt(), 3) val state = Reg(init=s_ready) val invalidated = Reg(Bool()) val refill_addr = Reg(UInt(width = paddrBits)) val refill_tag = refill_addr(tagBits+untagBits-1,untagBits) val refill_idx = refill_addr(untagBits-1,blockOffBits) val s1_tag_hit = Wire(Vec(nWays, Bool())) val s1_any_tag_hit = s1_tag_hit.reduce(_||_) || Mux(s1_slaveValid, true.B, addrMaybeInScratchpad(io.s1_paddr)) val s1_valid = Reg(init=Bool(false)) val s1_hit = s1_valid && s1_any_tag_hit val s1_miss = s1_valid && state === s_ready && !s1_any_tag_hit io.req.ready := !(tl_out.d.fire() || s0_slaveValid || s3_slaveValid) val s0_valid = io.req.fire() val s0_vaddr = io.req.bits.addr s1_valid := s0_valid when (s1_miss) { refill_addr := io.s1_paddr } val (_, _, refill_done, refill_cnt) = edge_out.count(tl_out.d) tl_out.d.ready := !s3_slaveValid require (edge_out.manager.minLatency > 0) val repl_way = if (isDM) UInt(0) else { // pick a way that is not used by the scratchpad val v0 = LFSR16(tl_out.a.fire())(log2Up(nWays)-1,0) var v = v0 for (i <- log2Ceil(nWays) - 1 to 0 by -1) { val mask = nWays - (BigInt(1) << (i + 1)) v = v | (lineInScratchpad(Cat(v0 | mask.U, refill_idx)) << i) } assert(!lineInScratchpad(Cat(v, refill_idx))) v } val entagbits = code.width(tagBits) val tag_array = SeqMem(nSets, Vec(nWays, Bits(width = entagbits))) val tag_rdata = tag_array.read(s0_vaddr(untagBits-1,blockOffBits), !refill_done && s0_valid) when (refill_done) { val tag = code.encode(refill_tag) tag_array.write(refill_idx, Vec.fill(nWays)(tag), Vec.tabulate(nWays)(repl_way === _)) } val vb_array = Reg(init=Bits(0, nSets*nWays)) when (tl_out.d.fire()) { // clear bit when refill starts so hit-under-miss doesn't fetch bad data vb_array := vb_array.bitSet(Cat(repl_way, refill_idx), refill_done && !invalidated) } val invalidate = Wire(init = io.invalidate) when (invalidate) { vb_array := Bits(0) invalidated := Bool(true) } val s1_tag_disparity = Wire(Vec(nWays, Bool())) val wordBits = coreInstBits * fetchWidth val s1_dout = Wire(Vec(nWays, UInt(width = code.width(wordBits)))) val s0_slaveAddr = tl_in.map(_.a.bits.address).getOrElse(0.U) val s1s3_slaveAddr = Reg(UInt(width = log2Ceil(outer.size))) val s1s3_slaveData = Reg(UInt(width = wordBits)) for (i <- 0 until nWays) { val s1_idx = io.s1_paddr(untagBits-1,blockOffBits) val s1_tag = io.s1_paddr(tagBits+untagBits-1,untagBits) val scratchpadHit = scratchpadWayValid(i) && Mux(s1_slaveValid, lineInScratchpad(scratchpadLine(s1s3_slaveAddr)) && scratchpadWay(s1s3_slaveAddr) === i, addrInScratchpad(io.s1_paddr) && scratchpadWay(io.s1_paddr) === i) val s1_vb = vb_array(Cat(UInt(i), s1_idx)) && !s1_slaveValid s1_tag_disparity(i) := s1_vb && code.decode(tag_rdata(i)).error s1_tag_hit(i) := scratchpadHit || (s1_vb && code.decode(tag_rdata(i)).uncorrected === s1_tag) } assert(!(s1_valid || s1_slaveValid) || PopCount(s1_tag_hit zip s1_tag_disparity map { case (h, d) => h && !d }) <= 1) require(tl_out.d.bits.data.getWidth % wordBits == 0) val data_arrays = Seq.fill(tl_out.d.bits.data.getWidth / wordBits) { SeqMem(nSets * refillCycles, Vec(nWays, UInt(width = code.width(wordBits)))) } for ((data_array, i) <- data_arrays zipWithIndex) { def wordMatch(addr: UInt) = addr.extract(log2Ceil(tl_out.d.bits.data.getWidth/8)-1, log2Ceil(wordBits/8)) === i def row(addr: UInt) = addr(untagBits-1, blockOffBits-log2Ceil(refillCycles)) val s0_ren = (s0_valid && wordMatch(s0_vaddr)) || (s0_slaveValid && wordMatch(s0_slaveAddr)) val wen = (tl_out.d.fire() && !invalidated) || (s3_slaveValid && wordMatch(s1s3_slaveAddr)) val mem_idx = Mux(tl_out.d.fire(), (refill_idx << log2Ceil(refillCycles)) | refill_cnt, Mux(s3_slaveValid, row(s1s3_slaveAddr), Mux(s0_slaveValid, row(s0_slaveAddr), row(s0_vaddr)))) when (wen) { val data = Mux(s3_slaveValid, s1s3_slaveData, tl_out.d.bits.data(wordBits*(i+1)-1, wordBits*i)) val way = Mux(s3_slaveValid, scratchpadWay(s1s3_slaveAddr), repl_way) data_array.write(mem_idx, Vec.fill(nWays)(code.encode(data)), (0 until nWays).map(way === _)) } val dout = data_array.read(mem_idx, !wen && s0_ren) when (wordMatch(Mux(s1_slaveValid, s1s3_slaveAddr, io.s1_paddr))) { s1_dout := dout } } // output signals outer.latency match { case 1 => require(code.isInstanceOf[uncore.util.IdentityCode]) require(outer.icacheParams.itimAddr.isEmpty) io.resp.bits := Mux1H(s1_tag_hit, s1_dout) io.resp.valid := s1_hit case 2 => val s2_valid = RegNext(s1_valid && !io.s1_kill, Bool(false)) val s2_hit = RegNext(s1_hit) val s2_tag_hit = RegEnable(s1_tag_hit, s1_valid || s1_slaveValid) val s2_dout = RegEnable(s1_dout, s1_valid || s1_slaveValid) val s2_way_mux = Mux1H(s2_tag_hit, s2_dout) val s2_tag_disparity = RegEnable(s1_tag_disparity, s1_valid || s1_slaveValid).asUInt.orR val s2_data_decoded = code.decode(s2_way_mux) val s2_disparity = s2_tag_disparity || s2_data_decoded.error when (s2_valid && s2_disparity) { invalidate := true } io.resp.bits := s2_data_decoded.uncorrected io.resp.valid := s2_valid && s2_hit && !s2_disparity tl_in.map { tl => tl.a.ready := !tl_out.d.fire() && !s1_slaveValid && !s2_slaveValid && !(tl.d.valid && !tl.d.ready) val s1_a = RegEnable(tl.a.bits, s0_slaveValid) when (s0_slaveValid) { val a = tl.a.bits s1s3_slaveAddr := tl.a.bits.address s1s3_slaveData := tl.a.bits.data when (edge_in.get.hasData(a)) { val enable = scratchpadWayValid(scratchpadWay(a.address)) when (!lineInScratchpad(scratchpadLine(a.address))) { scratchpadMax.get := scratchpadLine(a.address) when (enable) { invalidate := true } } scratchpadOn := enable } } assert(!s2_valid || RegNext(RegNext(s0_vaddr)) === io.s2_vaddr) when (!(tl.a.valid || s1_slaveValid || s2_slaveValid) && s2_valid && s2_data_decoded.correctable && !s2_tag_disparity) { // handle correctable errors on CPU accesses to the scratchpad. // if there is an in-flight slave-port access to the scratchpad, // report the a miss but don't correct the error (as there is // a structural hazard on s1s3_slaveData/s1s3_slaveAddress). s3_slaveValid := true s1s3_slaveData := s2_data_decoded.corrected s1s3_slaveAddr := Cat(OHToUInt(s2_tag_hit), io.s2_vaddr(untagBits-1, log2Ceil(wordBits/8)), s1s3_slaveAddr(log2Ceil(wordBits/8)-1, 0)) } val respValid = RegInit(false.B) respValid := s2_slaveValid || (respValid && !tl.d.ready) when (s2_slaveValid) { when (edge_in.get.hasData(s1_a)) { s3_slaveValid := true } def byteEn(i: Int) = !(edge_in.get.hasData(s1_a) && s1_a.mask(i)) s1s3_slaveData := (0 until wordBits/8).map(i => Mux(byteEn(i), s2_data_decoded.corrected, s1s3_slaveData)(8*(i+1)-1, 8*i)).asUInt } tl.d.valid := respValid tl.d.bits := Mux(edge_in.get.hasData(s1_a), edge_in.get.AccessAck(s1_a, UInt(0)), edge_in.get.AccessAck(s1_a, UInt(0), UInt(0))) tl.d.bits.data := s1s3_slaveData // Tie off unused channels tl.b.valid := false tl.c.ready := true tl.e.ready := true } } tl_out.a.valid := state === s_request && !io.s2_kill tl_out.a.bits := edge_out.Get( fromSource = UInt(0), toAddress = (refill_addr >> blockOffBits) << blockOffBits, lgSize = lgCacheBlockBytes)._2 tl_out.b.ready := Bool(true) tl_out.c.valid := Bool(false) tl_out.e.valid := Bool(false) assert(!(tl_out.a.valid && addrMaybeInScratchpad(tl_out.a.bits.address))) // control state machine switch (state) { is (s_ready) { when (s1_miss && !io.s1_kill) { state := s_request } invalidated := Bool(false) } is (s_request) { when (tl_out.a.ready) { state := s_refill } when (io.s2_kill) { state := s_ready } } } when (refill_done) { assert(state === s_refill) state := s_ready } }