Table of Contents

Table of Contents
Introduction
TileLink Architecture
Agents
Channels
Transaction Flows
Concurrency
Channel Signal Descriptions
Acquire
Probe
Release
Grant
Finish
Parameters

Introduction

TileLink is a protocol designed to be a substrate for cache coherence transactions in an
on-chip memory hierarchy. Its purpose is to orthogonalize the design of the on-chip network
and the implementation of the cache controllers from the design of the coherence protocol
itself. Any cache coherence protocol that conforms to TileLink’s transaction structure can be
used interchangeably with the physical networks and cache controllers we provide.

TileLink is roughly analogous to the data link layer in the IP network protocol stack, but
exposes some details of the physical link necessary for efficient controller implementation. It
also codifies some transaction types that are common to all protocols, particularly the
transactions servicing memory accesses made by agents that do not themselves have
caches.

TileLink Architecture

Agents

TileLink assumes a Client/Manager architecture where agents participating in the coherence
protocol are either:

e clients requesting access to cache blocks, or

e managers overseeing the propagation of cache block permissions and data

http://www.google.com/url?q=http%3A%2F%2Ftinker.cc.gatech.edu%2Fpdfs%2FMICRO44_Jesse_Beu.pdf&sa=D&sntz=1&usg=AFQjCNGULwpbblsTNrRwZ2sBaXv9_PCbUQ

A client may be a cache, a DMA engine, or any other component that would like to participate
in the coherent memory domain, regardless of whether or not it actually keeps a copy of the
data locally. A manager may be an outer-level cache controller, a directory, or a broadcast
medium such as a bus. In a multi-level memory hierarchy, a particular cache controller can
function as both a client (wrt caches further out in the hierarchy) and a manager (wrt caches
closer to the processors).

Channels

TileLink defines five independent transaction channels. These channels may be multiplexed
over the same physical link, but to avoid deadlock TileLink specifies a priority amongst the
channels that must be maintained. Channels may contain both metadata and data
components. The channels are:

e Acquire. Initiates a transaction to acquire access to a cache block with proper
permissions. Also used to write data without caching it.

e Probe. Queries an agent to determine whether it has a cache block or revoke its
permissions on that cache block.

e Release. Acknowledgement of probe receipt, releasing permissions on the line along
with any dirty data. Also used to voluntarily write back data.

e Grant. Provides data or permissions to the original requestor granting, access to the
cache block. Also used to acknowledge voluntary Releases.

e Finish. Final acknowledgement of transaction completion from requestor, used for
transaction ordering.

At present time, all channels are routed from clients to managers or from managers to clients.
In the future, client-to-client Grants may be added.

The prioritization of channels is Finish >> Grant >> Release >> Probe >> Acquire. Preventing
messages of a lower priority from blocking messages of a higher priority from being sent or
received is necessary to avoid deadlock.

Transaction Flows

There are two types of transaction that can occur on a cache block managed by TileLink. The
first supports clients acquiring a cache block:

A client sends an Acquire to a manager

The manager sends any necessary Probes to clients

The manager waits to receive a Release for every probe that was sent
The manager communicates with backing memory if required

e Having obtained the required data or permissions, the manager responds to the
original requestor with a Grant

e Upon receiving a Grant, the original client responds to the manager with a Finish to
complete the transaction

The second type of transaction is supports clients voluntarily releasing a cache block:

e Aclient sends a Release to a manager, specifying that it is voluntary
e The manager communicates with backing memory if required
e The manager acknowledges completion of the transaction using a Grant

Concurrency

TileLink does not make any assumptions about the ordering of messages sent point-to-point
over particular channels. Therefore, concurrency must be managed by agents at several
points in the system.

e A manager should not accept a request for a transaction on a block that is already
in-flight for a different client (unless it knows how to merge the two transactions as
discussed below). Specifically, the manager must wait until it has received a Finish
from the original client in order to ensure proper ordering of any future Grants.

e If client has an outstanding voluntary writeback transaction, it cannot respond to an
incoming Probe request on that block with Releases until it receives a Grant from the
manager acknowledging completion of the writeback.

Transactions can be merged in certain situations. One specific situation that must be handled
by all manager agents is receiving a voluntary Release for a block which another client is
currently attempting to Acquire. The manager must accept the voluntary Release as well as
any Releases resulting from Probe messages, and provide Grant messages to both clients
before the transaction can be considered complete.

When running on networks that provide guaranteed ordering of messages between any
client/manager pair, the Finish acknowledgment of a Grant (and the Grant acknowledgement
of a voluntary Release) can be omitted.

Channel Signal Descriptions

This section details the specific signals contained in each channel of the TileLink protocol.
Every channel is wrapped in the DecoupledIO interface, meaning that each contains ready
and valid signals as well as the following. Channels with data may send the data over multiple

beats; the width of the underlying network is exposed to improve the efficiency of refilling data
into caches whose data array rows are of a matching size.

Acquire

Initiates a transaction to acquire access to a cache block with proper permissions. Also used
to write data without caching it (acquiring permissions for the write as it does so).

addr_block Ulnt Physical address of the cache block, with block offset removed

client_xact_id | Ulnt Client’s id for the transaction

data Ulnt Client-sent data, used for uncached writes

addr_beat Ulnt Offset of this beat’s worth of data within the cache block

built_in_type Bool Whether the transaction is a built-in or custom type

a_type Uint Type of the transaction
For built-in transactions, one of: [UncachedRead, UncachedWrite,
UncachedAtomic, UncachedReadBlock, UncachedWriteBlock]
Otherwise defined by the coherence protocol

subblock Union | Used in uncached subblock transactions, possible subfields below:

allocate Bool R/W: Hints whether to allocate data in outer caches when servicing
this request

operand_sz Ulnt A: Size of the request (Byte, Half, Word, Double)

subblock_addr | Ulnt A: Address of the operand within the block

atomic_op Ulnt A: AMO ALU opcode

write_mask Ulnt W: Byte mask for write data

There are five built-in types of Acquire that are available to all clients that want to participate

in the coherence protocol, even if they themselves will not keep cached copies of the data.

Because these transactions do not create a new private copy of the targeted cache block,

they are termed “uncached” transactions. The available uncached transactions are as follows:
e UncachedReadBlock: Fetches an entire cache block and serves it back to the

requestor.

e UncachedRead: Fetched a single beat of data from a cache block and returns only

that beat

e UncachedWriteBlock: Writes out an entire cache block to backing memory

e UncachedWrite: Writes up to a beat’s worth of data to backing memory. Uses a write
mask to determine which bytes contain valid data

e UncachedAtomic: Performs an atomic memory op in backing memory. The maximum
available operand size is 64b (sizes and opcodes per RISC-V atomic insts).

Probe

Queries an agent to determine whether it has a cache block or revoke its permissions on that
cache block.

addr_block Ulnt Physical address of the cache block, with block offset removed
p_type Ulint Transaction type, defined by coherence protocol
Release

Acknowledgement of probe receipt, releasing permissions on the line along with any dirty
data. Also used to voluntarily write back data or cede permissions on the block.

addr_block Ulnt Physical address of the cache block, with block offset removed

r_type Ulint Transaction type, defined by coherence protocol

client_ xact id | Ulnt Client’s id for the transaction

data Ulnt Used to writeback dirty data

addr_beat Ulnt Offset of this beat’s worth of data within the cache block

voluntary Bool Whether this release is voluntary or in response to a Probe
Grant

Provides data or permissions to the original requestor granting, access to the cache block.
Also used to acknowledge voluntary Releases.

built_in_type Bool | Whether transaction type is built-in or custom

g_type Ulnt | Type of the transaction

For built-in transactions, one of: [VoluntaryAck, UncachedRead,
UncachedWrite, UncachedAtomic, UncachedReadBlock]
Otherwise defined by the coherence protocol

client_xact id Uint | Client’s id for the transaction

manager_xact_id | UInt | Manager’s id for the transaction, passed to Finish

data Uint | Used to supply data to original requestor

addr_beat Ulnt | Offset of this beat’s worth of data within the cache block

There are five built-in types of Grant that are available to all managers that want to participate
in the coherence protocol. Because “uncached” transactions do not create a new private copy
of the targeted cache block, we use these Grant types mostly as acknowledgements. The
available types are as follows:

UncachedReadBlock: Full cache block in response to Acquire.UncachedReadBlock
UncachedRead: Single beat of data in response to Acquire.UncachedRead
UncachedWrite: Acknowledgement of Acquire.{UncachedWrite,UncachedWriteBlock}
UncachedAtomic: Single beat of data in response to Acquire.UncachedAtomic,
response to atomic op is stored at the originally specified address within the beat

e VoluntaryAck: Acknowledgement of any voluntary Release

Finish

Final acknowledgement of transaction completion from requestor, used for transaction
ordering.

manager_xact_id | UInt | Manager’s id for the transaction

Parameters

This section defines the parameters that are exposed by the TileLink to the top-level design.
All agents that implement TileLink should either work for all values of these parameters within
the specified ranges, or should add Chisel.Constraints to the design to define functional limits
on hem.

TLId String Which TileLink in a multi-level hierarchy
TLCoherence CoherencePolicy | Coherency policy used on this TileLink
TLAddrBits Int Address size

TLManagerXactldBits Int Size needed to track outstanding xacts

TLClientXactldBits Int Size needed to track outstanding xacts
TLDataBits Int Amount of block data sent per beat
TLDataBeats Int Number of beats per cache block

