// See LICENSE.SiFive for license details. // If you know two clocks are related with a N:1 or 1:N relationship, you // can cross the clock domains with lower latency than an AsyncQueue. // This clock crossing behaves almost identically to a TLBuffer(2): // - It adds one cycle latency to each clock domain. // - All outputs of TLRational are registers (bits, valid, and ready). // - It costs 3*bits registers as opposed to 2*bits in a TLBuffer(2) package freechips.rocketchip.tilelink import Chisel._ import chisel3.internal.sourceinfo.SourceInfo import freechips.rocketchip.config.Parameters import freechips.rocketchip.diplomacy._ import freechips.rocketchip.util._ class TLRationalCrossingSource(implicit p: Parameters) extends LazyModule { val node = TLRationalSourceNode() lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => val bce = edgeIn.manager.anySupportAcquireB && edgeIn.client.anySupportProbe val direction = edgeOut.manager.direction out.a <> ToRational(in.a, direction) in.d <> FromRational(out.d, direction.flip) if (bce) { in.b <> FromRational(out.b, direction.flip) out.c <> ToRational(in.c, direction) out.e <> ToRational(in.e, direction) } else { in.b.valid := Bool(false) in.c.ready := Bool(true) in.e.ready := Bool(true) out.b.ready := Bool(true) out.c.valid := Bool(false) out.e.valid := Bool(false) out.b.sink := UInt(0) out.c.source := UInt(0) out.e.source := UInt(0) } } } } class TLRationalCrossingSink(direction: RationalDirection = Symmetric)(implicit p: Parameters) extends LazyModule { val node = TLRationalSinkNode(direction) lazy val module = new LazyModuleImp(this) { (node.in zip node.out) foreach { case ((in, edgeIn), (out, edgeOut)) => val bce = edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe val direction = edgeIn.manager.direction out.a <> FromRational(in.a, direction) in.d <> ToRational(out.d, direction.flip) if (bce) { in.b <> ToRational(out.b, direction.flip) out.c <> FromRational(in.c, direction) out.e <> FromRational(in.e, direction) } else { out.b.ready := Bool(true) out.c.valid := Bool(false) out.e.valid := Bool(false) in.b.valid := Bool(false) in.c.ready := Bool(true) in.e.ready := Bool(true) in.b.source := UInt(0) in.c.sink := UInt(0) in.e.sink := UInt(0) } } } } object TLRationalCrossingSource { // applied to the TL source node; y.node := TLRationalCrossingSource()(x.node) def apply()(x: TLOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): TLRationalOutwardNode = { val source = LazyModule(new TLRationalCrossingSource) source.node :=? x source.node } } object TLRationalCrossingSink { // applied to the TL source node; y.node := TLRationalCrossingSink()(x.node) def apply(direction: RationalDirection = Symmetric)(x: TLRationalOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): TLOutwardNode = { val sink = LazyModule(new TLRationalCrossingSink(direction)) sink.node :=? x sink.node } } class TLRationalCrossing(direction: RationalDirection = Symmetric)(implicit p: Parameters) extends LazyModule { val nodeIn = TLIdentityNode() val nodeOut = TLIdentityNode() val node = NodeHandle(nodeIn, nodeOut) val source = LazyModule(new TLRationalCrossingSource) val sink = LazyModule(new TLRationalCrossingSink(direction)) val _ = (sink.node := source.node) // no monitor val in = (source.node := nodeIn) val out = (nodeOut := sink.node) lazy val module = new LazyModuleImp(this) { val io = IO(new Bundle { val in_clock = Clock(INPUT) val in_reset = Bool(INPUT) val out_clock = Clock(INPUT) val out_reset = Bool(INPUT) }) source.module.clock := io.in_clock source.module.reset := io.in_reset in.foreach { lm => lm.module.clock := io.in_clock lm.module.reset := io.in_reset } sink.module.clock := io.out_clock sink.module.reset := io.out_reset out.foreach { lm => lm.module.clock := io.out_clock lm.module.reset := io.out_reset } } } /** Synthesizeable unit tests */ import freechips.rocketchip.unittest._ class TLRAMRationalCrossingSource(name: String, txns: Int)(implicit p: Parameters) extends LazyModule { val node = TLRationalIdentityNode() val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel(name)) model.node := fuzz.node node := TLRationalCrossingSource()(TLDelayer(0.25)(model.node)) lazy val module = new LazyModuleImp(this) { val io = IO(new Bundle { val finished = Bool(OUTPUT) }) io.finished := fuzz.module.io.finished } } class TLRAMRationalCrossingSink(direction: RationalDirection)(implicit p: Parameters) extends LazyModule { val node = TLRationalIdentityNode() val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff))) ram.node := TLFragmenter(4, 256)(TLDelayer(0.25)(TLRationalCrossingSink(direction)(node))) lazy val module = new LazyModuleImp(this) { } } class TLRAMRationalCrossing(txns: Int)(implicit p: Parameters) extends LazyModule { val sym_fast_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing sym_fast", txns)) val sym_slow_sink = LazyModule(new TLRAMRationalCrossingSink(Symmetric)) sym_slow_sink.node := sym_fast_source.node val sym_slow_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing sym_slow", txns)) val sym_fast_sink = LazyModule(new TLRAMRationalCrossingSink(Symmetric)) sym_fast_sink.node := sym_slow_source.node val fix_fast_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing fast", txns)) val fix_slow_sink = LazyModule(new TLRAMRationalCrossingSink(FastToSlow)) fix_slow_sink.node := fix_fast_source.node val fix_slow_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing slow", txns)) val fix_fast_sink = LazyModule(new TLRAMRationalCrossingSink(SlowToFast)) fix_fast_sink.node := fix_slow_source.node lazy val module = new LazyModuleImp(this) with UnitTestModule { io.finished := sym_fast_source.module.io.finished && sym_slow_source.module.io.finished && fix_fast_source.module.io.finished && fix_slow_source.module.io.finished // Generate faster clock (still divided so verilator approves) val fast = Module(new Pow2ClockDivider(1)) sym_fast_source.module.clock := fast.io.clock_out sym_fast_sink .module.clock := fast.io.clock_out fix_fast_source.module.clock := fast.io.clock_out fix_fast_sink .module.clock := fast.io.clock_out // Generate slower clock val slow = Module(new Pow2ClockDivider(2)) fix_slow_source.module.clock := slow.io.clock_out fix_slow_sink .module.clock := slow.io.clock_out val odd = Module(new ClockDivider3) odd.io.clk_in := clock sym_slow_source.module.clock := odd.io.clk_out sym_slow_sink .module.clock := odd.io.clk_out } } class TLRAMRationalCrossingTest(txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { io.finished := Module(LazyModule(new TLRAMRationalCrossing(txns)).module).io.finished }