// See LICENSE.SiFive for license details. package freechips.rocketchip.coreplex import Chisel._ import chisel3.internal.sourceinfo.SourceInfo import freechips.rocketchip.config.{Field, Parameters} import freechips.rocketchip.devices.tilelink._ import freechips.rocketchip.devices.debug.{HasPeripheryDebug, HasPeripheryDebugModuleImp} import freechips.rocketchip.diplomacy._ import freechips.rocketchip.tile._ import freechips.rocketchip.tilelink._ import freechips.rocketchip.interrupts._ import freechips.rocketchip.util._ // TODO: how specific are these to RocketTiles? case class TileMasterPortParams( addBuffers: Int = 0, cork: Option[Boolean] = None) { def adapt(coreplex: HasPeripheryBus) (masterNode: TLOutwardNode) (implicit p: Parameters, sourceInfo: SourceInfo): TLOutwardNode = { val tile_master_cork = cork.map(u => (LazyModule(new TLCacheCork(unsafe = u)))) val tile_master_fixer = LazyModule(new TLFIFOFixer(TLFIFOFixer.allUncacheable)) (Seq(tile_master_fixer.node) ++ TLBuffer.chain(addBuffers) ++ tile_master_cork.map(_.node)) .foldRight(masterNode)(_ :=* _) } } case class TileSlavePortParams( addBuffers: Int = 0, blockerCtrlAddr: Option[BigInt] = None) { def adapt(coreplex: HasPeripheryBus) (slaveNode: TLInwardNode) (implicit p: Parameters, sourceInfo: SourceInfo): TLInwardNode = { val tile_slave_blocker = blockerCtrlAddr .map(BasicBusBlockerParams(_, coreplex.pbus.beatBytes, coreplex.sbus.beatBytes)) .map(bp => LazyModule(new BasicBusBlocker(bp))) tile_slave_blocker.foreach { _.controlNode := coreplex.pbus.toVariableWidthSlaves } (Seq() ++ tile_slave_blocker.map(_.node) ++ TLBuffer.chain(addBuffers)) .foldLeft(slaveNode)(_ :*= _) } } case class RocketCrossingParams( crossingType: CoreplexClockCrossing = SynchronousCrossing(), master: TileMasterPortParams = TileMasterPortParams(), slave: TileSlavePortParams = TileSlavePortParams()) { def knownRatio: Option[Int] = crossingType match { case RationalCrossing(_) => Some(2) case _ => None } } case object RocketTilesKey extends Field[Seq[RocketTileParams]](Nil) case object RocketCrossingKey extends Field[Seq[RocketCrossingParams]](List(RocketCrossingParams())) trait HasRocketTiles extends HasTiles with HasPeripheryBus with HasPeripheryPLIC with HasPeripheryClint with HasPeripheryDebug { val module: HasRocketTilesModuleImp protected val rocketTileParams = p(RocketTilesKey) private val NumRocketTiles = rocketTileParams.size private val crossingParams = p(RocketCrossingKey) private val crossings = crossingParams.size match { case 1 => List.fill(NumRocketTiles) { crossingParams.head } case NumRocketTiles => crossingParams case _ => throw new Exception("RocketCrossingKey.size must == 1 or == RocketTilesKey.size") } private val crossingTuples = rocketTileParams.zip(crossings) // Make a wrapper for each tile that will wire it to coreplex devices and crossbars, // according to the specified type of clock crossing. val rocketTiles = crossingTuples.map { case (tp, crossing) => // For legacy reasons, it is convenient to store some state // in the global Parameters about the specific tile being built now val wrapper = LazyModule(new RocketTileWrapper( params = tp, crossing = crossing.crossingType )(p.alterPartial { case TileKey => tp case BuildRoCC => tp.rocc case SharedMemoryTLEdge => sharedMemoryTLEdge case RocketCrossingKey => List(crossing) }) ).suggestName(tp.name) // Connect the master ports of the tile to the system bus sbus.fromTile(tp.name) { implicit p => crossing.master.adapt(this)(wrapper.crossTLOut :=* wrapper.masterNode) } // Connect the slave ports of the tile to the periphery bus pbus.toTile(tp.name) { implicit p => crossing.slave.adapt(this)(wrapper.slaveNode :*= wrapper.crossTLIn) } // Handle all the different types of interrupts crossing to or from the tile: // 1. Debug interrupt is definitely asynchronous in all cases. // 2. The CLINT and PLIC output interrupts are synchronous to the periphery clock, // so might need to be synchronized depending on the Tile's crossing type. // 3. Local Interrupts are required to already be synchronous to the tile clock. // 4. Interrupts coming out of the tile are sent to the PLIC, // so might need to be synchronized depending on the Tile's crossing type. // NOTE: The order of calls to := matters! They must match how interrupts // are decoded from rocket.intNode inside the tile. // 1. always async crossing for debug wrapper.intXbar.intnode := wrapper { IntSyncCrossingSink(3) } := debug.intnode // 2. clint+plic conditionally crossing val periphIntNode = wrapper.intXbar.intnode :=* wrapper.crossIntIn periphIntNode := clint.intnode // msip+mtip periphIntNode := plic.intnode // meip if (tp.core.useVM) periphIntNode := plic.intnode // seip // 3. local interrupts never cross // this.localIntNode is wired up externally // lip // 4. conditional crossing from core to PLIC wrapper.rocket.intOutputNode.foreach { i => FlipRendering { implicit p => plic.intnode :=* wrapper.crossIntOut :=* i } } wrapper } } trait HasRocketTilesModuleImp extends HasTilesModuleImp with HasPeripheryDebugModuleImp { val outer: HasRocketTiles } class RocketCoreplex(implicit p: Parameters) extends BaseCoreplex with HasRocketTiles { val tiles = rocketTiles override lazy val module = new RocketCoreplexModule(this) } class RocketCoreplexModule[+L <: RocketCoreplex](_outer: L) extends BaseCoreplexModule(_outer) with HasRocketTilesModuleImp { tile_inputs.zip(outer.hartIdList).foreach { case(wire, i) => wire.clock := clock wire.reset := reset wire.hartid := UInt(i) wire.reset_vector := global_reset_vector } }