// See LICENSE.SiFive for license details. package uncore.tilelink2 import Chisel._ import chisel3.experimental.chiselName import config._ import diplomacy._ import util._ class TLRAM(address: AddressSet, executable: Boolean = true, beatBytes: Int = 4, name: Option[String] = None)(implicit p: Parameters) extends LazyModule { val device = name.map(new SimpleDevice(_, Seq("sifive,sram0"))).getOrElse(new MemoryDevice) val node = TLManagerNode(Seq(TLManagerPortParameters( Seq(TLManagerParameters( address = List(address), resources = device.reg("mem"), regionType = RegionType.UNCACHED, executable = executable, supportsGet = TransferSizes(1, beatBytes), supportsPutPartial = TransferSizes(1, beatBytes), supportsPutFull = TransferSizes(1, beatBytes), fifoId = Some(0))), // requests are handled in order beatBytes = beatBytes, minLatency = 1))) // no bypass needed for this device // We require the address range to include an entire beat (for the write mask) require ((address.mask & (beatBytes-1)) == beatBytes-1) lazy val module = new Implementation @chiselName class Implementation extends LazyModuleImp(this) { val io = new Bundle { val in = node.bundleIn } def bigBits(x: BigInt, tail: List[Boolean] = List.empty[Boolean]): List[Boolean] = if (x == 0) tail.reverse else bigBits(x >> 1, ((x & 1) == 1) :: tail) val mask = bigBits(address.mask >> log2Ceil(beatBytes)) val in = io.in(0) val edge = node.edgesIn(0) val addrBits = (mask zip edge.addr_hi(in.a.bits).toBools).filter(_._1).map(_._2) val memAddress = Cat(addrBits.reverse) val mem = SeqMem(1 << addrBits.size, Vec(beatBytes, Bits(width = 8))) val d_full = RegInit(Bool(false)) val d_read = Reg(Bool()) val d_size = Reg(UInt()) val d_source = Reg(UInt()) val d_addr = Reg(UInt()) val d_data = Wire(UInt()) // Flow control when (in.d.fire()) { d_full := Bool(false) } when (in.a.fire()) { d_full := Bool(true) } in.d.valid := d_full in.a.ready := in.d.ready || !d_full in.d.bits := edge.AccessAck(d_addr, UInt(0), d_source, d_size) // avoid data-bus Mux in.d.bits.data := d_data in.d.bits.opcode := Mux(d_read, TLMessages.AccessAckData, TLMessages.AccessAck) val read = in.a.bits.opcode === TLMessages.Get val rdata = Wire(Vec(beatBytes, Bits(width = 8))) val wdata = Vec.tabulate(beatBytes) { i => in.a.bits.data(8*(i+1)-1, 8*i) } d_data := Cat(rdata.reverse) when (in.a.fire()) { d_read := read d_size := in.a.bits.size d_source := in.a.bits.source d_addr := edge.addr_lo(in.a.bits) } // exactly this pattern is required to get a RWM memory when (in.a.fire() && !read) { mem.write(memAddress, wdata, in.a.bits.mask.toBools) } val ren = in.a.fire() && read rdata := mem.readAndHold(memAddress, ren) // Tie off unused channels in.b.valid := Bool(false) in.c.ready := Bool(true) in.e.ready := Bool(true) } } /** Synthesizeable unit testing */ import unittest._ class TLRAMSimple(ramBeatBytes: Int, txns: Int)(implicit p: Parameters) extends LazyModule { val fuzz = LazyModule(new TLFuzzer(txns)) val model = LazyModule(new TLRAMModel("SRAMSimple")) val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff), beatBytes = ramBeatBytes)) model.node := fuzz.node ram.node := TLDelayer(0.25)(model.node) lazy val module = new LazyModuleImp(this) with HasUnitTestIO { io.finished := fuzz.module.io.finished } } class TLRAMSimpleTest(ramBeatBytes: Int, txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) { io.finished := Module(LazyModule(new TLRAMSimple(ramBeatBytes, txns)).module).io.finished }