// See LICENSE.SiFive for license details. package uncore.tilelink2 import Chisel._ import chisel3.internal.sourceinfo.SourceInfo import config._ import diplomacy._ import util.PositionalMultiQueue import uncore.axi4._ import scala.math.{min, max} case class TLToAXI4Node(beatBytes: Int) extends MixedAdapterNode(TLImp, AXI4Imp)( dFn = { p => val idSize = p.clients.map { c => if (c.requestFifo) 1 else c.sourceId.size } val idStart = idSize.scanLeft(0)(_+_).init val masters = ((idStart zip idSize) zip p.clients) map { case ((start, size), c) => AXI4MasterParameters( id = IdRange(start, start+size), aligned = true, maxFlight = Some(if (c.requestFifo) c.sourceId.size else 1), nodePath = c.nodePath) } AXI4MasterPortParameters( masters = masters, userBits = log2Ceil(p.endSourceId) + 4 + log2Ceil(beatBytes)) }, uFn = { p => TLManagerPortParameters( managers = p.slaves.map { case s => TLManagerParameters( address = s.address, resources = s.resources, regionType = s.regionType, executable = s.executable, nodePath = s.nodePath, supportsGet = s.supportsRead, supportsPutFull = s.supportsWrite, supportsPutPartial = s.supportsWrite, fifoId = Some(0))}, beatBytes = p.beatBytes, minLatency = p.minLatency) }) class TLToAXI4(beatBytes: Int, combinational: Boolean = true)(implicit p: Parameters) extends LazyModule { val node = TLToAXI4Node(beatBytes) lazy val module = new LazyModuleImp(this) { val io = new Bundle { val in = node.bundleIn val out = node.bundleOut } ((io.in zip io.out) zip (node.edgesIn zip node.edgesOut)) foreach { case ((in, out), (edgeIn, edgeOut)) => val slaves = edgeOut.slave.slaves // All pairs of slaves must promise that they will never interleave data require (slaves(0).interleavedId.isDefined) slaves.foreach { s => require (s.interleavedId == slaves(0).interleavedId) } // Construct the source=>ID mapping table val idTable = Wire(Vec(edgeIn.client.endSourceId, out.aw.bits.id)) var idCount = Array.fill(edgeOut.master.endId) { 0 } (edgeIn.client.clients zip edgeOut.master.masters) foreach { case (c, m) => for (i <- 0 until c.sourceId.size) { val id = m.id.start + (if (c.requestFifo) 0 else i) idTable(c.sourceId.start + i) := UInt(id) idCount(id) = idCount(id) + 1 } } // We need to keep the following state from A => D: (addr_lo, size, source) // All of those fields could potentially require 0 bits (argh. Chisel.) // We will pack all of that extra information into the user bits. val sourceBits = log2Ceil(edgeIn.client.endSourceId) val sizeBits = log2Ceil(edgeIn.maxLgSize+1) val addrBits = log2Ceil(edgeIn.manager.beatBytes) val stateBits = addrBits + sizeBits + sourceBits // could be 0 require (stateBits <= out.aw.bits.params.userBits) val a_address = edgeIn.address(in.a.bits) val a_addr_lo = edgeIn.addr_lo(a_address) val a_source = in.a.bits.source val a_size = edgeIn.size(in.a.bits) val a_isPut = edgeIn.hasData(in.a.bits) val a_last = edgeIn.last(in.a) // Make sure the fields are within the bounds we assumed assert (a_source < UInt(BigInt(1) << sourceBits)) assert (a_size < UInt(BigInt(1) << sizeBits)) assert (a_addr_lo < UInt(BigInt(1) << addrBits)) // Carefully pack/unpack fields into the state we send val baseEnd = 0 val (sourceEnd, sourceOff) = (sourceBits + baseEnd, baseEnd) val (sizeEnd, sizeOff) = (sizeBits + sourceEnd, sourceEnd) val (addrEnd, addrOff) = (addrBits + sizeEnd, sizeEnd) require (addrEnd == stateBits) val a_state = (a_source << sourceOff) | (a_size << sizeOff) | (a_addr_lo << addrOff) val r_state = out.r.bits.user.getOrElse(UInt(0)) val r_source = if (sourceBits > 0) r_state(sourceEnd-1, sourceOff) else UInt(0) val r_size = if (sizeBits > 0) r_state(sizeEnd -1, sizeOff) else UInt(0) val r_addr_lo = if (addrBits > 0) r_state(addrEnd -1, addrOff) else UInt(0) val b_state = out.b.bits.user.getOrElse(UInt(0)) val b_source = if (sourceBits > 0) b_state(sourceEnd-1, sourceOff) else UInt(0) val b_size = if (sizeBits > 0) b_state(sizeEnd -1, sizeOff) else UInt(0) val b_addr_lo = if (addrBits > 0) b_state(addrEnd -1, addrOff) else UInt(0) // We need these Queues because AXI4 queues are irrevocable val depth = if (combinational) 1 else 2 val out_arw = Wire(Decoupled(new AXI4BundleARW(out.params))) val out_w = Wire(out.w) out.w <> Queue.irrevocable(out_w, entries=depth, flow=combinational) val queue_arw = Queue.irrevocable(out_arw, entries=depth, flow=combinational) // Fan out the ARW channel to AR and AW out.ar.bits := queue_arw.bits out.aw.bits := queue_arw.bits out.ar.valid := queue_arw.valid && !queue_arw.bits.wen out.aw.valid := queue_arw.valid && queue_arw.bits.wen queue_arw.ready := Mux(queue_arw.bits.wen, out.aw.ready, out.ar.ready) val beatBytes = edgeIn.manager.beatBytes val maxSize = UInt(log2Ceil(beatBytes)) val doneAW = RegInit(Bool(false)) when (in.a.fire()) { doneAW := !a_last } val arw = out_arw.bits arw.wen := a_isPut arw.id := idTable(a_source) arw.addr := a_address arw.len := UIntToOH1(a_size, AXI4Parameters.lenBits + log2Ceil(beatBytes)) >> log2Ceil(beatBytes) arw.size := Mux(a_size >= maxSize, maxSize, a_size) arw.burst := AXI4Parameters.BURST_INCR arw.lock := UInt(0) // not exclusive (LR/SC unsupported b/c no forward progress guarantee) arw.cache := UInt(0) // do not allow AXI to modify our transactions arw.prot := AXI4Parameters.PROT_PRIVILEDGED arw.qos := UInt(0) // no QoS arw.user.foreach { _ := a_state } val stall = Wire(Bool()) in.a.ready := !stall && Mux(a_isPut, (doneAW || out_arw.ready) && out_w.ready, out_arw.ready) out_arw.valid := !stall && in.a.valid && Mux(a_isPut, !doneAW && out_w.ready, Bool(true)) out_w.valid := !stall && in.a.valid && a_isPut && (doneAW || out_arw.ready) out_w.bits.data := in.a.bits.data out_w.bits.strb := in.a.bits.mask out_w.bits.last := a_last // R and B => D arbitration val r_holds_d = RegInit(Bool(false)) when (out.r.fire()) { r_holds_d := !out.r.bits.last } // Give R higher priority than B val r_wins = out.r.valid || r_holds_d out.r.ready := in.d.ready out.b.ready := in.d.ready && !r_wins in.d.valid := Mux(r_wins, out.r.valid, out.b.valid) val r_error = out.r.bits.resp =/= AXI4Parameters.RESP_OKAY val b_error = out.b.bits.resp =/= AXI4Parameters.RESP_OKAY val r_d = edgeIn.AccessAck(r_addr_lo, UInt(0), r_source, r_size, UInt(0), r_error) val b_d = edgeIn.AccessAck(b_addr_lo, UInt(0), b_source, b_size, b_error) in.d.bits := Mux(r_wins, r_d, b_d) in.d.bits.data := out.r.bits.data // avoid a costly Mux // We need to track if any reads or writes are inflight for a given ID. // If the opposite type arrives, we must stall until it completes. val a_sel = UIntToOH(arw.id, edgeOut.master.endId).toBools val d_sel = UIntToOH(Mux(r_wins, out.r.bits.id, out.b.bits.id), edgeOut.master.endId).toBools val d_last = Mux(r_wins, out.r.bits.last, Bool(true)) val d_first = RegInit(Bool(true)) when (in.d.fire()) { d_first := d_last } val stalls = ((a_sel zip d_sel) zip idCount) filter { case (_, n) => n > 1 } map { case ((as, ds), n) => val count = RegInit(UInt(0, width = log2Ceil(n + 1))) val write = Reg(Bool()) val idle = count === UInt(0) // Once we start getting the response, it's safe to already switch R/W val inc = as && out_arw.fire() val dec = ds && d_first && in.d.fire() count := count + inc.asUInt - dec.asUInt assert (!dec || count =/= UInt(0)) // underflow assert (!inc || count =/= UInt(n)) // overflow when (inc) { write := arw.wen } !idle && write =/= arw.wen } stall := stalls.foldLeft(Bool(false))(_||_) // Tie off unused channels in.b.valid := Bool(false) in.c.ready := Bool(true) in.e.ready := Bool(true) } } } object TLToAXI4 { // applied to the TL source node; y.node := TLToAXI4(beatBytes)(x.node) def apply(beatBytes: Int, combinational: Boolean = true)(x: TLOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): AXI4OutwardNode = { val axi4 = LazyModule(new TLToAXI4(beatBytes, combinational)) axi4.node := x axi4.node } }