package referencechip import Chisel._ import uncore._ import scala.reflect._ object TileLinkHeaderAppender { def apply[T <: SourcedMessage with HasPhysicalAddress, U <: SourcedMessage with HasTileLinkData](in: ClientSourcedDataIO[LogicalNetworkIO[T],LogicalNetworkIO[U]], clientId: Int, nBanks: Int, addrConvert: Bits => UInt)(implicit conf: TileLinkConfiguration) = { val shim = Module(new TileLinkHeaderAppender(clientId, nBanks, addrConvert)(in.meta.bits.payload.clone, in.data.bits.payload.clone)) shim.io.in <> in shim.io.out } def apply[T <: SourcedMessage with HasPhysicalAddress](in: ClientSourcedFIFOIO[LogicalNetworkIO[T]], clientId: Int, nBanks: Int, addrConvert: Bits => UInt)(implicit conf: TileLinkConfiguration) = { val shim = Module(new TileLinkHeaderAppender(clientId, nBanks, addrConvert)(in.bits.payload.clone, new AcquireData)) shim.io.in.meta <> in shim.io.out.meta } } class TileLinkHeaderAppender[T <: SourcedMessage with HasPhysicalAddress, U <: SourcedMessage with HasTileLinkData](clientId: Int, nBanks: Int, addrConvert: Bits => UInt)(metadata: => T, data: => U)(implicit conf: TileLinkConfiguration) extends Module { implicit val ln = conf.ln val io = new Bundle { val in = new ClientSourcedDataIO()((new LogicalNetworkIO){ metadata }, (new LogicalNetworkIO){ data }).flip val out = new ClientSourcedDataIO()((new LogicalNetworkIO){ metadata }, (new LogicalNetworkIO){ data }) } val meta_q = Queue(io.in.meta) val data_q = Queue(io.in.data) if(nBanks == 1) { io.out.meta.bits.payload := meta_q.bits.payload io.out.meta.bits.header.src := UInt(clientId) io.out.meta.bits.header.dst := UInt(0) io.out.meta.valid := meta_q.valid meta_q.ready := io.out.meta.ready io.out.data.bits.payload := data_q.bits.payload io.out.data.bits.header.src := UInt(clientId) io.out.data.bits.header.dst := UInt(0) io.out.data.valid := data_q.valid data_q.ready := io.out.data.ready } else { val meta_has_data = conf.co.messageHasData(meta_q.bits.payload) val addr_q = Module(new Queue(io.in.meta.bits.payload.addr.clone, 2, pipe = true, flow = true)) val data_cnt = Reg(init=UInt(0, width = log2Up(REFILL_CYCLES))) val data_cnt_up = data_cnt + UInt(1) io.out.meta.bits.payload := meta_q.bits.payload io.out.meta.bits.header.src := UInt(clientId) io.out.meta.bits.header.dst := addrConvert(meta_q.bits.payload.addr) io.out.data.bits.payload := meta_q.bits.payload io.out.data.bits.header.src := UInt(clientId) io.out.data.bits.header.dst := addrConvert(addr_q.io.deq.bits) addr_q.io.enq.bits := meta_q.bits.payload.addr io.out.meta.valid := meta_q.valid && addr_q.io.enq.ready meta_q.ready := io.out.meta.ready && addr_q.io.enq.ready io.out.data.valid := data_q.valid && addr_q.io.deq.valid data_q.ready := io.out.data.ready && addr_q.io.deq.valid addr_q.io.enq.valid := meta_q.valid && io.out.meta.ready && meta_has_data addr_q.io.deq.ready := Bool(false) when(data_q.valid && data_q.ready) { data_cnt := data_cnt_up when(data_cnt_up === UInt(0)) { addr_q.io.deq.ready := Bool(true) } } } } //Adapter betweewn an UncachedTileLinkIO and a mem controller MemIO class MemIOUncachedTileLinkIOConverter(qDepth: Int)(implicit conf: TileLinkConfiguration) extends Module { val io = new Bundle { val uncached = new UncachedTileLinkIO().flip val mem = new ioMem } val mem_cmd_q = Module(new Queue(new MemReqCmd, qDepth)) val mem_data_q = Module(new Queue(new MemData, qDepth)) mem_cmd_q.io.enq.valid := io.uncached.acquire.meta.valid io.uncached.acquire.meta.ready := mem_cmd_q.io.enq.ready mem_cmd_q.io.enq.bits.rw := conf.co.needsOuterWrite(io.uncached.acquire.meta.bits.payload.a_type, UInt(0)) mem_cmd_q.io.enq.bits.tag := io.uncached.acquire.meta.bits.payload.client_xact_id mem_cmd_q.io.enq.bits.addr := io.uncached.acquire.meta.bits.payload.addr mem_data_q.io.enq.valid := io.uncached.acquire.data.valid io.uncached.acquire.data.ready := mem_data_q.io.enq.ready mem_data_q.io.enq.bits.data := io.uncached.acquire.data.bits.payload.data io.uncached.grant.valid := io.mem.resp.valid io.mem.resp.ready := io.uncached.grant.ready io.uncached.grant.bits.payload.data := io.mem.resp.bits.data io.uncached.grant.bits.payload.client_xact_id := io.mem.resp.bits.tag io.uncached.grant.bits.payload.master_xact_id := UInt(0) // DNC io.uncached.grant.bits.payload.g_type := UInt(0) // DNC io.mem.req_cmd <> mem_cmd_q.io.deq io.mem.req_data <> mem_data_q.io.deq } class ReferenceChipCrossbarNetwork(endpoints: Seq[CoherenceAgentRole])(implicit conf: UncoreConfiguration) extends LogicalNetwork[TileLinkIO](endpoints)(conf.tl.ln) { implicit val (tl, ln, co) = (conf.tl, conf.tl.ln, conf.tl.co) val io = Vec(endpoints.map(_ match { case t:ClientCoherenceAgent => {(new TileLinkIO).flip}; case h:MasterCoherenceAgent => {new TileLinkIO}})) implicit val pconf = new PhysicalNetworkConfiguration(ln.nEndpoints, ln.idBits) // Same config for all networks // Aliases for the various network IO bundle types type FBCIO[T <: Data] = DecoupledIO[PhysicalNetworkIO[T]] type FLNIO[T <: Data] = DecoupledIO[LogicalNetworkIO[T]] type PBCIO[M <: Data, D <: Data] = PairedDataIO[PhysicalNetworkIO[M], PhysicalNetworkIO[D]] type PLNIO[M <: Data, D <: Data] = PairedDataIO[LogicalNetworkIO[M], LogicalNetworkIO[D]] type FromCrossbar[T <: Data] = FBCIO[T] => FLNIO[T] type ToCrossbar[T <: Data] = FLNIO[T] => FBCIO[T] // Shims for converting between logical network IOs and physical network IOs //TODO: Could be less verbose if you could override subbundles after a <> def DefaultFromCrossbarShim[T <: Data](in: FBCIO[T]): FLNIO[T] = { val out = Decoupled(new LogicalNetworkIO()(in.bits.payload.clone)).asDirectionless out.bits.header := in.bits.header out.bits.payload := in.bits.payload out.valid := in.valid in.ready := out.ready out } def CrossbarToMasterShim[T <: Data](in: FBCIO[T]): FLNIO[T] = { val out = DefaultFromCrossbarShim(in) out.bits.header.src := in.bits.header.src - UInt(ln.nMasters) out } def CrossbarToClientShim[T <: Data](in: FBCIO[T]): FLNIO[T] = { val out = DefaultFromCrossbarShim(in) out.bits.header.dst := in.bits.header.dst - UInt(ln.nMasters) out } def DefaultToCrossbarShim[T <: Data](in: FLNIO[T]): FBCIO[T] = { val out = Decoupled(new PhysicalNetworkIO()(in.bits.payload.clone)).asDirectionless out.bits.header := in.bits.header out.bits.payload := in.bits.payload out.valid := in.valid in.ready := out.ready out } def MasterToCrossbarShim[T <: Data](in: FLNIO[T]): FBCIO[T] = { val out = DefaultToCrossbarShim(in) out.bits.header.dst := in.bits.header.dst + UInt(ln.nMasters) out } def ClientToCrossbarShim[T <: Data](in: FLNIO[T]): FBCIO[T] = { val out = DefaultToCrossbarShim(in) out.bits.header.src := in.bits.header.src + UInt(ln.nMasters) out } // Make an individual connection between virtual and physical ports using // a particular shim. Also seal the unused FIFO control signal. def doFIFOInputHookup[T <: Data](phys_in: FBCIO[T], phys_out: FBCIO[T], log_io: FLNIO[T], shim: ToCrossbar[T]) = { val s = shim(log_io) phys_in.valid := s.valid phys_in.bits := s.bits s.ready := phys_in.ready phys_out.ready := Bool(false) } def doFIFOOutputHookup[T <: Data](phys_in: FBCIO[T], phys_out: FBCIO[T], log_io: FLNIO[T], shim: FromCrossbar[T]) = { val s = shim(phys_out) log_io.valid := s.valid log_io.bits := s.bits s.ready := log_io.ready phys_in.valid := Bool(false) } // Use reflection to determine whether a particular endpoint should be // hooked up as an [input/output] for a FIFO nework that is transmiitting // [client/master]-sourced messages. def doFIFOHookup[S <: CoherenceAgentRole: ClassTag, T <: Data](end: CoherenceAgentRole, phys_in: FBCIO[T], phys_out: FBCIO[T], log_io: FLNIO[T], inShim: ToCrossbar[T], outShim: FromCrossbar[T]) = { // Is end's type a subtype of S, the agent type associated with inputs? if(classTag[S].runtimeClass.isInstance(end)) doFIFOInputHookup(phys_in, phys_out, log_io, inShim) else doFIFOOutputHookup(phys_in, phys_out, log_io, outShim) } def doClientSourcedFIFOHookup[T <: Data](end: CoherenceAgentRole, phys_in: FBCIO[T], phys_out: FBCIO[T], log_io: FLNIO[T]) = doFIFOHookup[ClientCoherenceAgent, T](end, phys_in, phys_out, log_io, ClientToCrossbarShim, CrossbarToMasterShim) def doMasterSourcedFIFOHookup[T <: Data](end: CoherenceAgentRole, phys_in: FBCIO[T], phys_out: FBCIO[T], log_io: FLNIO[T]) = doFIFOHookup[MasterCoherenceAgent, T](end, phys_in, phys_out, log_io, MasterToCrossbarShim, CrossbarToClientShim) // Use reflection to determine whether a particular endpoint should be // hooked up as an [input/output] for a Paired nework that is transmiitting // [client/master]-sourced messages. def doPairedDataHookup[S <: CoherenceAgentRole : ClassTag, T <: Data, R <: Data](end: CoherenceAgentRole, phys_in: PBCIO[T,R], phys_out: PBCIO[T,R], log_io: PLNIO[T,R], inShim: ToCrossbar[T], outShim: FromCrossbar[T], inShimD: ToCrossbar[R], outShimD: FromCrossbar[R]) = { // Is end's type a subtype of S, the agent type associated with inputs? if(classTag[S].runtimeClass.isInstance(end)) { doFIFOInputHookup[T](phys_in.meta, phys_out.meta, log_io.meta, inShim) doFIFOInputHookup[R](phys_in.data, phys_out.data, log_io.data, inShimD) } else { doFIFOOutputHookup[T](phys_in.meta, phys_out.meta, log_io.meta, outShim) doFIFOOutputHookup[R](phys_in.data, phys_out.data, log_io.data, outShimD) } } def doClientSourcedPairedHookup[T <: Data, R <: Data](end: CoherenceAgentRole, phys_in: PBCIO[T,R], phys_out: PBCIO[T,R], log_io: PLNIO[T,R]) = doPairedDataHookup[ClientCoherenceAgent, T, R](end, phys_in, phys_out, log_io, ClientToCrossbarShim, CrossbarToMasterShim, ClientToCrossbarShim, CrossbarToMasterShim) def doMasterSourcedPairedHookup[T <: Data, R <: Data](end: CoherenceAgentRole, phys_in: PBCIO[T,R], phys_out: PBCIO[T,R], log_io: PLNIO[T,R]) = doPairedDataHookup[MasterCoherenceAgent, T, R](end, phys_in, phys_out, log_io, MasterToCrossbarShim, CrossbarToClientShim, MasterToCrossbarShim, CrossbarToClientShim) // Actually instantiate the particular networks required for TileLink def acqHasData(acq: PhysicalNetworkIO[Acquire]) = co.messageHasData(acq.payload) val acq_net = Module(new PairedCrossbar(REFILL_CYCLES, acqHasData _)(new Acquire, new AcquireData)) endpoints.zip(io).zipWithIndex.map{ case ((end, io), id) => doClientSourcedPairedHookup(end, acq_net.io.in(id), acq_net.io.out(id), io.acquire) } def relHasData(rel: PhysicalNetworkIO[Release]) = co.messageHasData(rel.payload) val rel_net = Module(new PairedCrossbar(REFILL_CYCLES, relHasData _)(new Release, new ReleaseData)) endpoints.zip(io).zipWithIndex.map{ case ((end, io), id) => doClientSourcedPairedHookup(end, rel_net.io.in(id), rel_net.io.out(id), io.release) } val probe_net = Module(new BasicCrossbar()(new Probe)) endpoints.zip(io).zipWithIndex.map{ case ((end, io), id) => doMasterSourcedFIFOHookup(end, probe_net.io.in(id), probe_net.io.out(id), io.probe) } val grant_net = Module(new BasicCrossbar()(new Grant)) endpoints.zip(io).zipWithIndex.map{ case ((end, io), id) => doMasterSourcedFIFOHookup(end, grant_net.io.in(id), grant_net.io.out(id), io.grant) } val ack_net = Module(new BasicCrossbar()(new GrantAck)) endpoints.zip(io).zipWithIndex.map{ case ((end, io), id) => doClientSourcedFIFOHookup(end, ack_net.io.in(id), ack_net.io.out(id), io.grant_ack) } val physicalNetworks = List(acq_net, rel_net, probe_net, grant_net, ack_net) }