package Top { import Chisel._ import Node._; import Constants._; import scala.math._; // interface between D$ and processor/DTLB class ioDmem(view: List[String] = null) extends Bundle(view) { // val dtlb_busy = Bool('input); val dtlb_miss = Bool('input); val req_val = Bool('input); val req_rdy = Bool('output); val req_cmd = Bits(4, 'input); val req_type = Bits(3, 'input); val req_idx = Bits(PGIDX_BITS, 'input); val req_ppn = Bits(PPN_BITS, 'input); val req_data = Bits(64, 'input); val req_tag = Bits(5, 'input); val xcpt_ma_ld = Bool('output); // misaligned load val xcpt_ma_st = Bool('output); // misaligned store val resp_miss = Bool('output); val resp_val = Bool('output); val resp_data = Bits(64, 'output); val resp_tag = Bits(12, 'output); } // interface between D$ and next level in memory hierarchy class ioDcache(view: List[String] = null) extends Bundle(view) { val req_addr = UFix(PADDR_BITS, 'input); val req_tag = UFix(3, 'input); val req_val = Bool('input); val req_rdy = Bool('output); val req_wdata = Bits(128, 'input); val req_rw = Bool('input); val resp_data = Bits(128, 'output); // val resp_tag = Bits(3, 'output); val resp_val = Bool('output); } class ioDCacheDM extends Bundle() { val cpu = new ioDmem(); val mem = new ioDcache().flip(); } class rocketDCacheStoreGen extends Component { val io = new Bundle { val req_type = Bits(3, 'input); val req_addr_lsb = Bits(3, 'input); val req_data = Bits(64, 'input); val store_wmask = Bits(8, 'output); val store_data = Bits(64, 'output); } // generate write mask and store data signals based on store type and address LSBs val wmask_b = Mux(io.req_addr_lsb === UFix(0, 3), Bits("b0000_0001", 8), Mux(io.req_addr_lsb === UFix(1, 3), Bits("b0000_0010", 8), Mux(io.req_addr_lsb === UFix(2, 3), Bits("b0000_0100", 8), Mux(io.req_addr_lsb === UFix(3, 3), Bits("b0000_1000", 8), Mux(io.req_addr_lsb === UFix(4, 3), Bits("b0001_0000", 8), Mux(io.req_addr_lsb === UFix(5, 3), Bits("b0010_0000", 8), Mux(io.req_addr_lsb === UFix(6, 3), Bits("b0100_0000", 8), Mux(io.req_addr_lsb === UFix(7, 3), Bits("b1000_0000", 8), UFix(0, 8))))))))); val wmask_h = Mux(io.req_addr_lsb(2,1) === UFix(0, 2), Bits("b0000_0011", 8), Mux(io.req_addr_lsb(2,1) === UFix(1, 2), Bits("b0000_1100", 8), Mux(io.req_addr_lsb(2,1) === UFix(2, 2), Bits("b0011_0000", 8), Mux(io.req_addr_lsb(2,1) === UFix(3, 2), Bits("b1100_0000", 8), UFix(0, 8))))); val wmask_w = Mux(io.req_addr_lsb(2) === UFix(0, 1), Bits("b0000_1111", 8), Mux(io.req_addr_lsb(2) === UFix(1, 1), Bits("b1111_0000", 8), UFix(0, 8))); val wmask_d = Bits("b1111_1111", 8); val store_wmask_byte = Mux(io.req_type === MT_B, wmask_b, Mux(io.req_type === MT_H, wmask_h, Mux(io.req_type === MT_W, wmask_w, Mux(io.req_type === MT_D, wmask_d, UFix(0, 8))))); io.store_wmask := store_wmask_byte; io.store_data := Mux(io.req_type === MT_B, Fill(8, io.req_data( 7,0)), Mux(io.req_type === MT_H, Fill(4, io.req_data(15,0)), Mux(io.req_type === MT_W, Fill(2, io.req_data(31,0)), Mux(io.req_type === MT_D, io.req_data, UFix(0, 64))))); } // state machine to flush (write back dirty lines, invalidate clean ones) the D$ class rocketDCacheDM_flush(lines: Int) extends Component { val io = new ioDCacheDM(); val dcache = new rocketDCacheDM(lines); val addrbits = PADDR_BITS; val indexbits = ceil(log10(lines)/log10(2)).toInt; val offsetbits = 6; val tagmsb = addrbits - 1; val taglsb = indexbits+offsetbits; val tagbits = tagmsb-taglsb+1; val indexmsb = taglsb-1; val indexlsb = offsetbits; val offsetmsb = indexlsb-1; val offsetlsb = 3; val flush_count = Reg(resetVal = UFix(0, indexbits)); val flush_resp_count = Reg(resetVal = UFix(0, indexbits)); val flushing = Reg(resetVal = Bool(false)); val flush_waiting = Reg(resetVal = Bool(false)); val r_cpu_req_tag = Reg(resetVal = Bits(0, 5)); when (io.cpu.req_val && io.cpu.req_rdy && (io.cpu.req_cmd === M_FLA)) { r_cpu_req_tag <== io.cpu.req_tag; flushing <== Bool(true); flush_waiting <== Bool(true); } when (dcache.io.cpu.req_rdy && (flush_count === ~Bits(0, indexbits))) { flushing <== Bool(false); } when (dcache.io.cpu.resp_val && (dcache.io.cpu.resp_tag === r_cpu_req_tag) && (flush_resp_count === ~Bits(0, indexbits))) { flush_waiting <== Bool(false); } when (flushing && dcache.io.cpu.req_rdy) { flush_count <== flush_count + UFix(1,1); } when (flush_waiting && dcache.io.cpu.resp_val && (dcache.io.cpu.resp_tag(5,0) === r_cpu_req_tag)) { flush_resp_count <== flush_resp_count + UFix(1,1); } dcache.io.cpu.req_val := (io.cpu.req_val && (io.cpu.req_cmd != M_FLA) && !flush_waiting) || flushing; dcache.io.cpu.req_cmd := Mux(flushing, M_FLA, io.cpu.req_cmd); dcache.io.cpu.req_idx := Mux(flushing, Cat(flush_count, Bits(0,offsetbits)), io.cpu.req_idx); dcache.io.cpu.req_ppn := Mux(flushing, UFix(0,PPN_BITS), io.cpu.req_ppn); dcache.io.cpu.req_tag := Mux(flushing, r_cpu_req_tag, io.cpu.req_tag); dcache.io.cpu.req_type := io.cpu.req_type; dcache.io.cpu.req_data ^^ io.cpu.req_data; dcache.io.cpu.dtlb_miss := io.cpu.dtlb_miss; dcache.io.mem ^^ io.mem; io.cpu.xcpt_ma_ld := dcache.io.cpu.xcpt_ma_ld; io.cpu.xcpt_ma_st := dcache.io.cpu.xcpt_ma_st; io.cpu.req_rdy := dcache.io.cpu.req_rdy && !flush_waiting; io.cpu.resp_miss := dcache.io.cpu.resp_miss; io.cpu.resp_data := dcache.io.cpu.resp_data; io.cpu.resp_tag := dcache.io.cpu.resp_tag; io.cpu.resp_val := dcache.io.cpu.resp_val & !(flush_waiting && (io.cpu.resp_tag === r_cpu_req_tag) && (flush_count != ~Bits(0, addrbits))); } class rocketDCacheDM(lines: Int) extends Component { val io = new ioDCacheDM(); val addrbits = PADDR_BITS; val indexbits = ceil(log10(lines)/log10(2)).toInt; val offsetbits = 6; // 64 byte cache lines = 2^6 bytes val tagmsb = PADDR_BITS-1; val taglsb = indexbits+offsetbits; val tagbits = tagmsb-taglsb+1; val indexmsb = taglsb-1; val indexlsb = offsetbits; val offsetmsb = indexlsb-1; val offsetlsb = 3; val s_reset :: s_ready :: s_replay_load :: s_write_amo :: s_start_writeback :: s_writeback :: s_req_refill :: s_refill :: s_resolve_miss :: Nil = Enum(9) { UFix() }; val state = Reg(resetVal = s_reset); // idx arrives one clock cycle prior to ppn b/c of DTLB val r_cpu_req_idx = Reg(resetVal = Bits(0, PGIDX_BITS)); val r_cpu_req_ppn = Reg(resetVal = Bits(0, PPN_BITS)); val r_cpu_req_val = Reg(resetVal = Bool(false)); val r_cpu_req_cmd = Reg(resetVal = Bits(0,4)); val r_cpu_req_type = Reg(resetVal = Bits(0,3)); val r_cpu_req_tag = Reg(resetVal = Bits(0,5)); val r_cpu_resp_val = Reg(resetVal = Bool(false)); val r_amo_data = Reg(resetVal = Bits(0,64)); val p_store_data = Reg(resetVal = Bits(0,64)); val p_store_idx = Reg(resetVal = Bits(0,PGIDX_BITS)); val p_store_type = Reg(resetVal = Bits(0,3)); val p_store_valid = Reg(resetVal = Bool(false)); val req_store = (io.cpu.req_cmd === M_XWR); val req_load = (io.cpu.req_cmd === M_XRD) || (io.cpu.req_cmd === M_PRD); val req_flush = (io.cpu.req_cmd === M_FLA); val req_amo = io.cpu.req_cmd(3).toBool; val r_req_load = (r_cpu_req_cmd === M_XRD) || (r_cpu_req_cmd === M_PRD); val r_req_store = (r_cpu_req_cmd === M_XWR); val r_req_flush = (r_cpu_req_cmd === M_FLA); val r_req_ptw_load = (r_cpu_req_cmd === M_PRD); val r_req_amo = r_cpu_req_cmd(3).toBool; when (io.cpu.req_val && io.cpu.req_rdy) { r_cpu_req_idx <== io.cpu.req_idx; r_cpu_req_cmd <== io.cpu.req_cmd; r_cpu_req_type <== io.cpu.req_type; r_cpu_req_tag <== io.cpu.req_tag; } when ((state === s_ready) && r_cpu_req_val && !io.cpu.dtlb_miss) { r_cpu_req_ppn <== io.cpu.req_ppn; } when (io.cpu.req_rdy) { r_cpu_req_val <== io.cpu.req_val; } otherwise { r_cpu_req_val <== Bool(false); } when (((state === s_resolve_miss) && (r_req_load || r_req_amo)) || (state === s_replay_load)) { r_cpu_resp_val <== Bool(true); } otherwise { r_cpu_resp_val <== Bool(false); } // refill counter val rr_count = Reg(resetVal = UFix(0,2)); val rr_count_next = rr_count + UFix(1); when (((state === s_refill) && io.mem.resp_val) || ((state === s_writeback) && io.mem.req_rdy)) { rr_count <== rr_count_next; } // tag array val tag_addr = Mux((state === s_ready), io.cpu.req_idx(PGIDX_BITS-1,offsetbits), r_cpu_req_idx(PGIDX_BITS-1,offsetbits)).toUFix; val tag_we = ((state === s_refill) && io.mem.resp_val && (rr_count === UFix(3,2))) || ((state === s_resolve_miss) && r_req_flush); val tag_array = new rocketSRAMsp(lines, tagbits); tag_array.io.a := tag_addr; tag_array.io.d := r_cpu_req_ppn; tag_array.io.we := tag_we; tag_array.io.bweb := ~Bits(0,tagbits); tag_array.io.ce := (io.cpu.req_val && io.cpu.req_rdy) || (state === s_start_writeback) || (state === s_writeback); val tag_rdata = tag_array.io.q; // valid bit array val vb_array = Reg(resetVal = Bits(0, lines)); when (tag_we && !r_req_flush) { vb_array <== vb_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1)); } when (tag_we && r_req_flush) { vb_array <== vb_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(0,1)); } val vb_rdata = Reg(vb_array(tag_addr).toBool); val tag_valid = r_cpu_req_val && vb_rdata; val tag_match = (tag_rdata === io.cpu.req_ppn); val tag_hit = tag_valid && tag_match; val miss = r_cpu_req_val && (!vb_rdata || !tag_match); // load/store addresses conflict if they are to any part of the same 64 bit word val addr_match = (r_cpu_req_idx(PGIDX_BITS-1,offsetlsb) === p_store_idx(PGIDX_BITS-1,offsetlsb)); val ldst_conflict = tag_valid && tag_match && (r_req_load || r_req_amo) && p_store_valid && addr_match; val store_hit = r_cpu_req_val && !io.cpu.dtlb_miss && tag_hit && r_req_store ; // write the pending store data when the cache is idle, when the next command isn't a load // or when there's a load to the same address (in which case there's a 2 cycle delay: // once cycle to write the store data and another to read the data back) val drain_store = ((store_hit || p_store_valid) && (!io.cpu.req_val || req_store || req_flush)) || (p_store_valid && (miss || ldst_conflict)); // write pending store data from a store which missed // after the cache line refill has completed val resolve_store = (state === s_resolve_miss) && r_req_store; // dirty bit array val db_array = Reg(resetVal = Bits(0, lines)); val tag_dirty = Reg(db_array(tag_addr)).toBool; when (io.cpu.req_val && io.cpu.req_rdy && req_store) { p_store_idx <== io.cpu.req_idx; p_store_data <== io.cpu.req_data; p_store_type <== io.cpu.req_type; } when (io.cpu.req_val && io.cpu.req_rdy && req_amo) { r_amo_data <== io.cpu.req_data; } when (store_hit && !drain_store) { p_store_valid <== Bool(true); } when (drain_store) { p_store_valid <== Bool(false); db_array <== db_array.bitSet(p_store_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1)); } when (resolve_store) { db_array <== db_array.bitSet(p_store_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1)); } when (state === s_write_amo) { db_array <== db_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(1,1)); } when (tag_we) { db_array <== db_array.bitSet(r_cpu_req_idx(PGIDX_BITS-1,offsetbits).toUFix, UFix(0,1)); } // generate write mask and data signals for stores and amos val storegen = new rocketDCacheStoreGen(); storegen.io.req_addr_lsb := p_store_idx(2,0); storegen.io.req_data := p_store_data; storegen.io.req_type := p_store_type; val store_data = Fill(2, storegen.io.store_data); val store_wmask_b = storegen.io.store_wmask; val store_wmask_d = Cat(Fill(8, store_wmask_b(7)), Fill(8, store_wmask_b(6)), Fill(8, store_wmask_b(5)), Fill(8, store_wmask_b(4)), Fill(8, store_wmask_b(3)), Fill(8, store_wmask_b(2)), Fill(8, store_wmask_b(1)), Fill(8, store_wmask_b(0))); val store_idx_sel = p_store_idx(offsetlsb).toBool; val store_wmask = Mux(store_idx_sel, Cat(store_wmask_d, Bits(0,64)), Cat(Bits(0,64), store_wmask_d)); // data array val data_array = new rocketSRAMsp(lines*4, 128); val data_array_rdata = data_array.io.q; val resp_data = Mux(r_cpu_req_idx(offsetlsb).toBool, data_array_rdata(127, 64), data_array_rdata(63,0)); val r_resp_data = Reg(resp_data); // ALU for AMOs val amo_wmask = Mux(r_cpu_req_type === MT_D, ~Bits(0,8), Mux(r_cpu_req_idx(2).toBool, Cat(~Bits(0,4), Bits(0,4)), Cat(Bits(0,4), ~Bits(0,4)))); val amo_store_wmask_d = Cat(Fill(8, amo_wmask(7)), Fill(8, amo_wmask(6)), Fill(8, amo_wmask(5)), Fill(8, amo_wmask(4)), Fill(8, amo_wmask(3)), Fill(8, amo_wmask(2)), Fill(8, amo_wmask(1)), Fill(8, amo_wmask(0))); val amo_store_idx_sel = r_cpu_req_idx(offsetlsb).toBool; val amo_store_wmask = Mux(amo_store_idx_sel, Cat(amo_store_wmask_d, Bits(0,64)), Cat(Bits(0,64), amo_store_wmask_d)); val amo_alu = new rocketDCacheAmoALU(); amo_alu.io.cmd := r_cpu_req_cmd; amo_alu.io.wmask := amo_wmask; amo_alu.io.lhs := Mux(r_cpu_resp_val, resp_data, r_resp_data).toUFix; amo_alu.io.rhs := r_amo_data.toUFix; val amo_alu_out = Cat(amo_alu.io.result,amo_alu.io.result); data_array.io.a := Mux(drain_store || resolve_store, p_store_idx(PGIDX_BITS-1, offsetmsb-1), Mux((state === s_writeback) && io.mem.req_rdy, Cat(r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count_next), Mux((state === s_start_writeback) || (state === s_writeback) || (state === s_refill), Cat(r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count), Mux((state === s_resolve_miss) || (state === s_replay_load) || (state === s_write_amo), r_cpu_req_idx(PGIDX_BITS-1, offsetmsb-1), io.cpu.req_idx(PGIDX_BITS-1, offsetmsb-1))))).toUFix; data_array.io.d := Mux((state === s_refill), io.mem.resp_data, Mux((state === s_write_amo), amo_alu_out, store_data)); data_array.io.we := ((state === s_refill) && io.mem.resp_val) || (state === s_write_amo) || drain_store || resolve_store; data_array.io.bweb := Mux((state === s_refill), ~Bits(0,128), Mux((state === s_write_amo), amo_store_wmask, store_wmask)); data_array.io.ce := (io.cpu.req_val && io.cpu.req_rdy && (req_load || req_amo)) || (state === s_start_writeback) || (state === s_writeback) || ((state === s_resolve_miss) && (r_req_load || r_req_amo)) || (state === s_replay_load); // signal a load miss when the data isn't present in the cache and when it's in the pending store data register // (causes the cache to block for 2 cycles and the load or amo instruction is replayed) val load_miss = !io.cpu.dtlb_miss && (state === s_ready) && r_cpu_req_val && (r_req_load || r_req_amo) && (!tag_hit || (p_store_valid && addr_match)); // output signals // busy when there's a load to the same address as a pending store, or on a cache miss, or when executing a flush io.cpu.req_rdy := (state === s_ready) && !io.cpu.dtlb_miss && !ldst_conflict && (!r_cpu_req_val || (tag_hit && !(r_req_flush || r_req_amo))); io.cpu.resp_val := !io.cpu.dtlb_miss && ((state === s_ready) && tag_hit && (r_req_load || r_req_amo) && !(p_store_valid && addr_match)) || ((state === s_resolve_miss) && r_req_flush) || r_cpu_resp_val; val misaligned = (((r_cpu_req_type === MT_H) || (r_cpu_req_type === MT_HU)) && r_cpu_req_idx(0).toBool) || (((r_cpu_req_type === MT_W) || (r_cpu_req_type === MT_WU)) && (r_cpu_req_idx(1,0) != Bits(0,2))) || ((r_cpu_req_type === MT_D) && (r_cpu_req_idx(2,0) != Bits(0,3))); io.cpu.xcpt_ma_ld := r_cpu_req_val && (r_req_load || r_req_amo) && misaligned; io.cpu.xcpt_ma_st := r_cpu_req_val && (r_req_store || r_req_amo) && misaligned; io.cpu.resp_miss := load_miss; // tag MSB distinguishes between loads destined for the PTW and CPU io.cpu.resp_tag := Cat(r_req_ptw_load, r_cpu_req_type, r_cpu_req_idx(2,0), r_cpu_req_tag); io.cpu.resp_data := resp_data; io.mem.req_val := (state === s_req_refill) || (state === s_writeback); io.mem.req_rw := (state === s_writeback); io.mem.req_wdata := data_array_rdata; io.mem.req_tag := UFix(0); io.mem.req_addr := Mux(state === s_writeback, Cat(tag_rdata, r_cpu_req_idx(PGIDX_BITS-1, offsetbits), rr_count), Cat(r_cpu_req_ppn, r_cpu_req_idx(PGIDX_BITS-1, offsetbits), Bits(0,2))).toUFix; // control state machine switch (state) { is (s_reset) { state <== s_ready; } is (s_ready) { when (io.cpu.dtlb_miss) { state <== s_ready; } when (ldst_conflict) { state <== s_replay_load; } when (!r_cpu_req_val || (tag_hit && !(r_req_flush || r_req_amo))) { state <== s_ready; } when (tag_hit && r_req_amo) { state <== s_write_amo; } when (tag_valid & tag_dirty) { state <== s_start_writeback; } when (r_req_flush) { state <== s_resolve_miss; } otherwise { state <== s_req_refill; } } is (s_replay_load) { state <== s_ready; } is (s_write_amo) { state <== s_ready; } is (s_start_writeback) { state <== s_writeback; } is (s_writeback) { when (io.mem.req_rdy && (rr_count === UFix(3,2))) { when (r_req_flush) { state <== s_resolve_miss; } otherwise { state <== s_req_refill; } } } is (s_req_refill) { when (io.mem.req_rdy) { state <== s_refill; } } is (s_refill) { when (io.mem.resp_val && (rr_count === UFix(3,2))) { state <== s_resolve_miss; } } is (s_resolve_miss) { when (r_req_amo) { state <== s_write_amo; } state <== s_ready; } } } class rocketDCacheAmoALU extends Component { val io = new Bundle { val cmd = Bits(4, 'input); val wmask = Bits(8, 'input); val lhs = UFix(64, 'input); val rhs = UFix(64, 'input); val result = UFix(64, 'output); } // val signed_cmp = (op === M_XA_MIN) || (op === M_XA_MAX); // val sub = (op === M_XA_MIN) || (op === M_XA_MINU) || // (op === M_XA_MAX) || (op === M_XA_MAXU); val adder_lhs = Cat(io.lhs(63,32),io.wmask(3) & io.lhs(31), io.lhs(30,0)).toUFix; val adder_rhs = Cat(io.rhs(63,32),io.wmask(3) & io.rhs(31), io.rhs(30,0)).toUFix; // val adder_rhs = Cat(Mux(sub, ~io.rhs, io.rhs), sub).toUFix; // val sum = adder_lhs + adder_rhs; // val adder_out = sum(64,1); val adder_out = adder_lhs + adder_rhs; val alu_out = Wire() { UFix() }; switch (io.cmd) { // is (M_XA_ADD) { alu_out <== adder_out; } is (M_XA_SWAP) { alu_out <== io.rhs; } is (M_XA_AND) { alu_out <== io.lhs & io.rhs; } is (M_XA_OR) { alu_out <== io.lhs | io.rhs; } } alu_out <== adder_out; io.result := alu_out; } }