package Top { import Chisel._ import Node._; import Constants._; import scala.math._; class StoreMaskGen extends Component { val io = new Bundle { val typ = Bits(3, 'input) val addr = Bits(3, 'input) val wmask = Bits(8, 'output) } val mask = Wire { Bits(width = io.wmask.width) } switch (io.typ(1,0)) { is (MT_B) { mask <== Bits( 1,1) << io.addr(2,0).toUFix } is (MT_H) { mask <== Bits( 3,2) << Cat(io.addr(2,1), Bits(0,1)).toUFix } is (MT_W) { mask <== Bits( 15,4) << Cat(io.addr(2,2), Bits(0,2)).toUFix } otherwise { mask <== Bits(255,8) } // MT_D } io.wmask := mask } class StoreDataGen extends Component { val io = new Bundle { val typ = Bits(3, 'input) val addr = Bits(3, 'input) val din = Bits(64, 'input) val dout = Bits(64, 'output) } val data = Wire { Bits(width = io.din.width) } switch (io.typ(1,0)) { is (MT_B) { data <== Fill(8, io.din( 7,0)) } is (MT_H) { data <== Fill(4, io.din(15,0)) } is (MT_W) { data <== Fill(2, io.din(31,0)) } otherwise { data <== io.din } // MT_D } io.dout := data } class LoadDataGen extends Component { val io = new Bundle { val typ = Bits(3, 'input) val addr = Bits(3, 'input) val din = Bits(64, 'input) val dout = Bits(64, 'output) val dout_subword = Bits(64, 'output) } val shifted = io.din >> Cat(io.addr(2), Bits(0, 5)).toUFix val extended = Wire { Bits(width = io.din.width) } switch (io.typ) { is(MT_W) { extended <== Cat(Fill(32, shifted(31)), shifted(31,0)) } is(MT_WU) { extended <== Cat(Bits(0, 32), shifted(31,0)) } otherwise { extended <== shifted } } val shifted_subword = Reg(extended) >> Cat(Reg(io.addr(1,0)), Bits(0, 3)).toUFix val extended_subword = Wire { Bits(width = io.din.width) } switch (Reg(io.typ)) { is (MT_B) { extended_subword <== Cat(Fill(56, shifted_subword( 7)), shifted_subword( 7, 0)) } is (MT_BU) { extended_subword <== Cat(Bits(0, 56), shifted_subword( 7, 0)) } is (MT_H) { extended_subword <== Cat(Fill(48, shifted_subword(15)), shifted_subword(15, 0)) } is (MT_HU) { extended_subword <== Cat(Bits(0, 48), shifted_subword(15, 0)) } otherwise { extended_subword <== shifted_subword } } io.dout := extended io.dout_subword := extended_subword } class RPQEntry extends Bundle { val offset = Bits(width = OFFSET_BITS) val cmd = Bits(width = 4) val typ = Bits(width = 3) val sdq_id = UFix(width = log2up(NSDQ)) val tag = Bits(width = CPU_TAG_BITS) } class Replay extends Bundle { val idx = Bits(width = IDX_BITS) val offset = Bits(width = OFFSET_BITS) val cmd = Bits(width = 4) val typ = Bits(width = 3) val sdq_id = UFix(width = log2up(NSDQ)) val tag = Bits(width = CPU_TAG_BITS) } class DataReq extends Bundle { val idx = Bits(width = IDX_BITS) val offset = Bits(width = IDX_BITS) val cmd = Bits(width = 4) val typ = Bits(width = 3) val data = Bits(width = CPU_DATA_BITS) } class DataArrayReq extends Bundle { val idx = Bits(width = IDX_BITS) val offset = Bits(width = log2up(REFILL_CYCLES)) val rw = Bool() val wmask = Bits(width = MEM_DATA_BITS/8) val data = Bits(width = MEM_DATA_BITS) } class MemReq extends Bundle { val rw = Bool() val addr = UFix(width = PPN_BITS+IDX_BITS) val tag = Bits(width = DMEM_TAG_BITS) } class WritebackReq extends Bundle { val ppn = Bits(width = PPN_BITS) val idx = Bits(width = IDX_BITS) } class MetaData extends Bundle { val valid = Bool() val dirty = Bool() val tag = Bits(width = PPN_BITS) } class MetaArrayReq extends Bundle { val idx = Bits(width = IDX_BITS) val rw = Bool() val data = new MetaData() } class MSHR(id: Int) extends Component { val io = new Bundle { val req_pri_val = Bool('input) val req_pri_rdy = Bool('output) val req_sec_val = Bool('input) val req_sec_rdy = Bool('output) val req_ppn = Bits(PPN_BITS, 'input) val req_idx = Bits(IDX_BITS, 'input) val req_offset = Bits(width = OFFSET_BITS) val req_cmd = Bits(width = 4) val req_type = Bits(width = 3) val req_sdq_id = UFix(width = log2up(NSDQ)) val req_tag = Bits(CPU_TAG_BITS, 'input) val idx_match = Bool('output) val idx = Bits(IDX_BITS, 'output) val tag = Bits(PPN_BITS, 'output) val mem_resp_val = Bool('input) val mem_req = (new ioDecoupled) { new MemReq() }.flip val meta_req = (new ioDecoupled) { new MetaArrayReq() }.flip val replay = (new ioDecoupled) { new Replay() }.flip } val valid = Reg(resetVal = Bool(false)) val dirty = Reg { Bool() } val requested = Reg { Bool() } val refilled = Reg { Bool() } val ppn = Reg { Bits() } val idx_ = Reg { Bits() } val req_load = (io.req_cmd === M_XRD) || (io.req_cmd === M_PFR) val req_use_rpq = (io.req_cmd != M_PFR) && (io.req_cmd != M_PFW) val next_dirty = io.req_pri_val && io.req_pri_rdy && !req_load || io.req_sec_val && io.req_sec_rdy && (!req_load || dirty) val sec_rdy = io.idx_match && !refilled && (dirty || !requested || req_load) val rpq = (new queueSimplePF(NRPQ)) { new RPQEntry() } rpq.io.q_reset := Bool(false) rpq.io.enq.valid := (io.req_pri_val && io.req_pri_rdy || io.req_sec_val && sec_rdy) && req_use_rpq rpq.io.enq.bits.offset := io.req_offset rpq.io.enq.bits.cmd := io.req_cmd rpq.io.enq.bits.typ := io.req_type rpq.io.enq.bits.sdq_id := io.req_sdq_id rpq.io.enq.bits.tag := io.req_tag rpq.io.deq.ready := io.replay.ready && refilled when (io.req_pri_val && io.req_pri_rdy) { valid <== Bool(true) requested <== Bool(false) refilled <== Bool(false) ppn <== io.req_ppn idx_ <== io.req_idx } when (io.mem_req.valid && io.mem_req.ready) { requested <== Bool(true) } when (io.mem_resp_val) { refilled <== Bool(true) } when (io.meta_req.valid && io.meta_req.ready) { valid <== Bool(false) } dirty <== next_dirty io.idx_match := valid && (idx_ === io.req_idx) io.idx := idx_ io.tag := ppn io.req_pri_rdy := !valid io.req_sec_rdy := sec_rdy && rpq.io.enq.ready io.meta_req.valid := valid && refilled && !rpq.io.deq.valid io.meta_req.bits.rw := Bool(true) io.meta_req.bits.idx := idx_ io.meta_req.bits.data.valid := Bool(true) io.meta_req.bits.data.dirty := dirty io.meta_req.bits.data.tag := ppn io.mem_req.valid := valid && !requested //io.mem_req.bits.itm := next_dirty io.mem_req.bits.rw := Bool(false) io.mem_req.bits.addr := Cat(ppn, idx_).toUFix io.mem_req.bits.tag := Bits(id) io.replay.valid := rpq.io.deq.valid && refilled io.replay.bits.idx := idx_ io.replay.bits.tag := rpq.io.deq.bits.tag io.replay.bits.offset := rpq.io.deq.bits.offset io.replay.bits.cmd := rpq.io.deq.bits.cmd io.replay.bits.typ := rpq.io.deq.bits.typ io.replay.bits.sdq_id := rpq.io.deq.bits.sdq_id } class MSHRFile extends Component { val io = new Bundle { val req_val = Bool('input) val req_rdy = Bool('output) val req_ppn = Bits(PPN_BITS, 'input) val req_idx = Bits(IDX_BITS, 'input) val req_offset = Bits(OFFSET_BITS, 'input) val req_cmd = Bits(4, 'input) val req_type = Bits(3, 'input) val req_data = Bits(CPU_DATA_BITS, 'input) val req_tag = Bits(CPU_TAG_BITS, 'input) val req_sdq_id = UFix(log2up(NSDQ), 'input) val mem_resp_val = Bool('input) val mem_resp_tag = Bits(DMEM_TAG_BITS, 'input) val mem_resp_idx = Bits(IDX_BITS, 'output) val mem_req = (new ioDecoupled) { new MemReq() }.flip() val meta_req = (new ioDecoupled) { new MetaArrayReq() }.flip() val replay = (new ioDecoupled) { new Replay() }.flip() } val idx_match = Wire { Bool() } val pri_rdy = Wire { Bool() } val sec_rdy = Wire { Bool() } val tag_mux = new Mux1H(NMSHR, PPN_BITS) val mem_resp_idx_mux = new Mux1H(NMSHR, IDX_BITS) val meta_req_arb = (new Arbiter(NMSHR)) { new MetaArrayReq() } val mem_req_arb = (new Arbiter(NMSHR)) { new MemReq() } val replay_arb = (new Arbiter(NMSHR)) { new Replay() } val alloc_arb = (new Arbiter(NMSHR)) { Bool() } alloc_arb.io.out.ready := io.req_val && !idx_match val tag_match = tag_mux.io.out === io.req_ppn for (i <- 0 to NMSHR-1) { val mshr = new MSHR(i) tag_mux.io.sel(i) := mshr.io.idx_match tag_mux.io.in(i) := mshr.io.tag alloc_arb.io.in(i).valid := mshr.io.req_pri_rdy mshr.io.req_pri_val := alloc_arb.io.in(i).ready mshr.io.req_sec_val := io.req_val && tag_match mshr.io.req_ppn := io.req_ppn mshr.io.req_tag := io.req_tag mshr.io.req_idx := io.req_idx mshr.io.req_offset := io.req_offset mshr.io.req_cmd := io.req_cmd mshr.io.req_type := io.req_type mshr.io.req_sdq_id := io.req_sdq_id mshr.io.meta_req <> meta_req_arb.io.in(i) mshr.io.mem_req <> mem_req_arb.io.in(i) mshr.io.replay <> replay_arb.io.in(i) val mem_resp_val = io.mem_resp_val && (UFix(i) === io.mem_resp_tag) mshr.io.mem_resp_val := mem_resp_val mem_resp_idx_mux.io.sel(i) := mem_resp_val mem_resp_idx_mux.io.in(i) := mshr.io.idx when (mshr.io.req_pri_rdy) { pri_rdy <== Bool(true) } when (mshr.io.req_sec_rdy) { sec_rdy <== Bool(true) } when (mshr.io.idx_match) { idx_match <== Bool(true) } } pri_rdy <== Bool(false) sec_rdy <== Bool(false) idx_match <== Bool(false) meta_req_arb.io.out ^^ io.meta_req mem_req_arb.io.out ^^ io.mem_req replay_arb.io.out ^^ io.replay io.req_rdy := Mux(idx_match, tag_match && sec_rdy, pri_rdy) io.mem_resp_idx := mem_resp_idx_mux.io.out } class ReplayUnit extends Component { val io = new Bundle { val sdq_enq = (new ioDecoupled) { Bits(width = CPU_DATA_BITS) } val sdq_id = UFix(log2up(NSDQ), 'output) val replay = (new ioDecoupled) { new Replay() } val data_req = (new ioDecoupled) { new DataReq() }.flip() val cpu_resp_val = Bool('output) val cpu_resp_tag = Bits(CPU_TAG_BITS, 'output) } val sdq_val = Reg(resetVal = UFix(0, NSDQ)) val sdq_allocator = new priorityEncoder(NSDQ) sdq_allocator.io.in := ~sdq_val val sdq_alloc_id = sdq_allocator.io.out.toUFix val replay_retry = Wire { Bool() } val replay_val = Reg(io.replay.valid || replay_retry, resetVal = Bool(false)) replay_retry <== replay_val && !io.data_req.ready val rp = Reg { new Replay() } when (io.replay.valid && io.replay.ready) { rp <== io.replay.bits } val rp_amo = rp.cmd(3).toBool val rp_store = (rp.cmd === M_XWR) val rp_load = (rp.cmd === M_XRD) val rp_write = rp_store || rp_amo val rp_read = rp_load || rp_amo val sdq_ren_new = io.replay.valid && (io.replay.bits.cmd != M_XRD) val sdq_ren_retry = replay_retry && rp_write val sdq_ren = sdq_ren_new || sdq_ren_retry val sdq_wen = io.sdq_enq.valid && io.sdq_enq.ready val sdq_addr = Mux(sdq_ren_retry, rp.sdq_id, Mux(sdq_ren_new, io.replay.bits.sdq_id, sdq_alloc_id)) val sdq = Mem4(NSDQ, io.sdq_enq.bits) sdq.setReadLatency(0) sdq.setTarget('inst) val sdq_dout = sdq.rw(sdq_addr, io.sdq_enq.bits, sdq_wen, cs = sdq_ren || sdq_wen) val sdq_free = replay_val && !replay_retry && rp_write sdq_val <== sdq_val & ~(sdq_free.toUFix << rp.sdq_id) | (sdq_wen.toUFix << sdq_alloc_id) io.sdq_enq.ready := (~sdq_val != UFix(0)) && !sdq_ren io.sdq_id := sdq_alloc_id io.replay.ready := !replay_retry io.data_req.valid := replay_val io.data_req.bits.idx := rp.idx io.data_req.bits.offset := rp.offset io.data_req.bits.cmd := rp.cmd io.data_req.bits.typ := rp.typ io.data_req.bits.data := sdq_dout io.cpu_resp_val := Reg(replay_val && !replay_retry && rp_read, resetVal = Bool(false)) io.cpu_resp_tag := Reg(rp.tag) } class WritebackUnit extends Component { val io = new Bundle { val req = (new ioDecoupled) { new WritebackReq() } val data_req = (new ioDecoupled) { new DataArrayReq() }.flip() val data_resp = Bits(MEM_DATA_BITS, 'input) val mem_req = (new ioDecoupled) { new MemReq() }.flip() val mem_req_data = Bits(MEM_DATA_BITS, 'output) } val wbq = (new queueSimplePF(REFILL_CYCLES)) { Bits(width = MEM_DATA_BITS) } val valid = Reg(resetVal = Bool(false)) val cnt = Reg() { UFix(width = log2up(REFILL_CYCLES+1)) } val addr = Reg() { new WritebackReq() } wbq.io.enq.valid := valid && Reg(io.data_req.valid && io.data_req.ready) wbq.io.enq.bits := io.data_resp wbq.io.deq.ready := io.mem_req.ready && (cnt === UFix(REFILL_CYCLES)) when (io.req.valid && io.req.ready) { valid <== Bool(true); cnt <== UFix(0); addr <== io.req.bits } when (io.data_req.valid && io.data_req.ready) { cnt <== cnt + UFix(1) } when ((cnt === UFix(REFILL_CYCLES)) && !wbq.io.deq.valid) { valid <== Bool(false) } io.req.ready := !valid io.data_req.valid := valid && wbq.io.enq.ready io.data_req.bits.idx := addr.idx io.data_req.bits.offset := cnt io.data_req.bits.rw := Bool(false) io.data_req.bits.wmask := Bits(0) io.data_req.bits.data := Bits(0) io.mem_req.valid := wbq.io.deq.valid && (cnt === UFix(REFILL_CYCLES)) io.mem_req.bits.rw := Bool(true) io.mem_req.bits.addr := Cat(addr.ppn, addr.idx).toUFix io.mem_req.bits.tag := Bits(0) io.mem_req_data := wbq.io.deq.bits } class FlushUnit(lines: Int) extends Component { val io = new Bundle { val req = (new ioDecoupled) { Bits(width = CPU_TAG_BITS) } val resp = (new ioDecoupled) { Bits(width = CPU_TAG_BITS) }.flip() val meta_req = (new ioDecoupled) { new MetaArrayReq() }.flip() val meta_resp = (new MetaData).asInput() val wb_req = (new ioDecoupled) { new WritebackReq() }.flip() } val s_reset :: s_ready :: s_meta_read :: s_meta_wait :: s_meta_write :: s_done :: Nil = Enum(6) { UFix() } val state = Reg(resetVal = s_reset) val tag = Reg() { Bits() } val cnt = Reg(resetVal = UFix(0, log2up(lines))) val next_cnt = cnt + UFix(1) switch (state) { is(s_reset) { when (io.meta_req.ready) { state <== Mux(~cnt === UFix(0), s_ready, s_reset); cnt <== next_cnt } } is(s_ready) { when (io.req.valid) { state <== s_meta_read; tag <== io.req.bits } } is(s_meta_read) { when (io.meta_req.ready) { state <== s_meta_wait } } is(s_meta_wait) { state <== Mux(io.meta_resp.valid && io.meta_resp.dirty && !io.wb_req.ready, s_meta_read, s_meta_write) } is(s_meta_write) { when (io.meta_req.ready) { state <== Mux(~cnt === UFix(0), s_done, s_meta_read); cnt <== next_cnt } } is(s_done) { when (io.resp.ready) { state <== s_ready } } } io.req.ready := state === s_ready io.resp.valid := state === s_done io.resp.bits := tag io.meta_req.valid := (state === s_meta_read) || (state === s_meta_write) || (state === s_reset) io.meta_req.bits.idx := cnt io.meta_req.bits.rw := (state === s_meta_write) || (state === s_reset) io.meta_req.bits.data.valid := Bool(false) io.meta_req.bits.data.dirty := Bool(false) io.meta_req.bits.data.tag := UFix(0) io.wb_req.valid := state === s_meta_wait io.meta_resp ^^ io.wb_req.bits } class MetaDataArray(lines: Int) extends Component { val io = new Bundle { val req = (new ioDecoupled) { new MetaArrayReq() } val resp = (new MetaData).asOutput() val state_req = (new ioDecoupled) { new MetaArrayReq() } } val vd_array = Mem4(lines, Bits(width = 2)) vd_array.setReadLatency(0) val vd_wdata1 = Cat(io.req.bits.data.valid, io.req.bits.data.dirty) val vd_rdata1 = vd_array.rw(io.req.bits.idx, vd_wdata1, io.req.valid && io.req.bits.rw) val vd_wdata2 = Cat(io.state_req.bits.data.valid, io.req.bits.data.dirty) vd_array.write(io.state_req.bits.idx, vd_wdata2, io.state_req.valid && io.state_req.bits.rw) val tag_array = Mem4(lines, io.resp.tag) tag_array.setReadLatency(0) tag_array.setTarget('inst) val tag_rdata = tag_array.rw(io.req.bits.idx, io.req.bits.data.tag, io.req.valid && io.req.bits.rw, cs = io.req.valid) io.resp.valid := vd_rdata1(1).toBool io.resp.dirty := vd_rdata1(0).toBool io.resp.tag := tag_rdata io.req.ready := Bool(true) } class DataArray(lines: Int) extends Component { val io = new Bundle { val req = (new ioDecoupled) { new DataArrayReq() } val resp = Bits(width = MEM_DATA_BITS, dir = 'output) } val wmask = FillInterleaved(8, io.req.bits.wmask) val array = Mem4(lines*REFILL_CYCLES, io.resp) array.setReadLatency(0) array.setTarget('inst) val addr = Cat(io.req.bits.idx, io.req.bits.offset) val rdata = array.rw(addr, io.req.bits.data, io.req.valid && io.req.bits.rw, wmask, cs = io.req.valid) io.resp := rdata io.req.ready := Bool(true) } class rocketNBDCacheAMOALU extends Component { val io = new Bundle { val cmd = Bits(4, 'input) val wmask = Bits(64/8, 'input) val lhs = UFix(64, 'input) val rhs = UFix(64, 'input) val result = UFix(64, 'output) } val signed = (io.cmd === M_XA_MIN) || (io.cmd === M_XA_MAX) val sub = (io.cmd === M_XA_MIN) || (io.cmd === M_XA_MINU) || (io.cmd === M_XA_MAX) || (io.cmd === M_XA_MAXU) val min = (io.cmd === M_XA_MIN) || (io.cmd === M_XA_MINU) val addsub_rhs = Mux(sub, ~io.rhs, io.rhs) val adder_lhs = Cat(io.lhs(63,32), io.wmask(3) & io.lhs(31), io.lhs(30,0)).toUFix; val adder_rhs = Cat(addsub_rhs(63,32), io.wmask(3) & addsub_rhs(31), addsub_rhs(30,0)).toUFix; val adder_out = adder_lhs + adder_rhs + sub.toUFix val cmp_lhs = Mux(io.wmask(7), io.lhs(63), io.lhs(31)) val cmp_rhs = Mux(io.wmask(7), io.rhs(63), io.rhs(31)) val cmp_diff = Mux(io.wmask(7), adder_out(63), adder_out(31)) val less = Mux(cmp_lhs === cmp_rhs, cmp_diff, Mux(signed, cmp_lhs, cmp_rhs)) val cmp_out = Mux(min === less, io.lhs, io.rhs) val alu_out = Wire { UFix(width = io.result.width) }; switch (io.cmd) { is (M_XA_ADD) { alu_out <== adder_out } is (M_XA_SWAP) { alu_out <== io.rhs } is (M_XA_AND) { alu_out <== io.lhs & io.rhs } is (M_XA_OR) { alu_out <== io.lhs | io.rhs } } alu_out <== cmp_out io.result := alu_out } // XXX broken for CPU_DATA_BITS != 64 class AMOUnit extends Component { val io = new Bundle { val req = (new ioDecoupled) { new DataReq() } val lhs = Bits(width = CPU_DATA_BITS) val rhs = Bits(width = CPU_DATA_BITS) val wmask = Bits(width = CPU_DATA_BITS/8, dir = 'input) val data_req = (new ioDecoupled) { new DataReq() }.flip() } val valid = Reg(resetVal = Bool(false)) val r_cmd = Reg() { Bits() } val r_offset = Reg() { Bits() } val r_type = Reg() { Bits() } val r_idx = Reg() { Bits() } val r_lhs = Reg() { Bits() } val r_rhs = Reg() { Bits() } val r_wmask = Reg() { Bits() } when (io.req.valid && io.req.ready) { valid <== Bool(true); r_idx <== io.req.bits.idx r_lhs <== io.lhs; r_rhs <== io.rhs; r_cmd <== io.req.bits.cmd; r_type <== io.req.bits.typ; r_offset <== io.req.bits.offset; r_wmask <== io.wmask } when (io.data_req.valid && io.data_req.ready) { valid <== Bool(false) } val alu = new rocketNBDCacheAMOALU alu.io.cmd := r_cmd alu.io.wmask := r_wmask alu.io.lhs := r_lhs alu.io.rhs := r_rhs io.req.ready := !valid io.data_req.valid := valid io.data_req.bits.idx := r_idx io.data_req.bits.cmd := r_cmd io.data_req.bits.typ := r_type io.data_req.bits.offset := r_offset io.data_req.bits.data := alu.io.result } class HellaCache(lines: Int) extends Component { val io = new ioDCacheDM(); val addrbits = PADDR_BITS; val indexbits = log2up(lines); val offsetbits = OFFSET_BITS; val tagmsb = PADDR_BITS-1; val taglsb = indexbits+offsetbits; val tagbits = tagmsb-taglsb+1; val indexmsb = taglsb-1; val indexlsb = offsetbits; val offsetmsb = indexlsb-1; val offsetlsb = log2up(CPU_DATA_BITS/8); val ramindexlsb = log2up(MEM_DATA_BITS/8); val early_nack = Reg { Bool() } val r_cpu_req_val_ = Reg(io.cpu.req_val, resetVal = Bool(false)) val r_cpu_req_val = r_cpu_req_val_ && !io.cpu.req_kill && !early_nack val r_cpu_req_idx = Reg() { Bits() } val r_cpu_req_cmd = Reg() { Bits() } val r_cpu_req_type = Reg() { Bits() } val r_cpu_req_tag = Reg() { Bits() } val r_cpu_req_data = Reg() { Bits() } val r2_cpu_req_val = Reg(r_cpu_req_val, resetVal = Bool(false)) val r2_cpu_req_ppn = Reg(io.cpu.req_ppn) val r2_cpu_req_idx = Reg(r_cpu_req_idx) val r2_cpu_req_cmd = Reg(r_cpu_req_cmd) val r2_cpu_req_type = Reg(r_cpu_req_type) val r2_cpu_req_tag = Reg(r_cpu_req_tag) val p_store_valid = Reg(resetVal = Bool(false)) val p_store_data = Reg() { Bits() } val p_store_idx = Reg() { Bits() } val p_store_type = Reg() { Bits() } val store_data_wide = Wire { Bits(width = MEM_DATA_BITS) } val store_wmask_wide = Wire { Bits(width = MEM_DATA_BITS) } val req_store = (io.cpu.req_cmd === M_XWR) val req_load = (io.cpu.req_cmd === M_XRD) || (io.cpu.req_cmd === M_PRD) val req_flush = (io.cpu.req_cmd === M_FLA) val req_amo = io.cpu.req_cmd(3).toBool val req_read = req_load || req_amo val req_write = req_store || req_amo val r_req_load = (r_cpu_req_cmd === M_XRD) val r_req_store = (r_cpu_req_cmd === M_XWR) val r_req_flush = (r_cpu_req_cmd === M_FLA) val r_req_amo = r_cpu_req_cmd(3).toBool val r_req_read = r_req_load || r_req_amo val r_req_write = r_req_store || r_req_amo val r2_req_load = (r2_cpu_req_cmd === M_XRD) val r2_req_store = (r2_cpu_req_cmd === M_XWR) val r2_req_amo = r2_cpu_req_cmd(3).toBool val r2_req_write = r2_req_store || r2_req_amo val nack_wb = Wire { Bool() } val nack_mshr = Wire { Bool() } val nack_sdq = Wire { Bool() } when (io.cpu.req_val) { r_cpu_req_idx <== io.cpu.req_idx r_cpu_req_cmd <== Mux(req_load, M_XRD, io.cpu.req_cmd) r_cpu_req_type <== io.cpu.req_type r_cpu_req_tag <== io.cpu.req_tag when (req_write) { r_cpu_req_data <== io.cpu.req_data } } // tags val meta = new MetaDataArray(lines) val meta_arb = (new Arbiter(3)) { new MetaArrayReq() } meta_arb.io.out <> meta.io.req // data val data = new DataArray(lines) val data_arb = (new Arbiter(5)) { new DataArrayReq() } data_arb.io.out <> data.io.req // writeback unit val wb = new WritebackUnit val mem_arb = (new Arbiter(2)) { new MemReq() } val wb_arb = (new Arbiter(2)) { new WritebackReq() } wb_arb.io.out <> wb.io.req wb.io.data_req <> data_arb.io.in(1) wb.io.data_resp <> data.io.resp wb.io.mem_req <> mem_arb.io.in(0) // reset and flush unit val flusher = new FlushUnit(lines) flusher.io.req.valid := r_cpu_req_val && r_req_flush flusher.io.wb_req <> wb_arb.io.in(0) flusher.io.meta_req <> meta_arb.io.in(0) flusher.io.meta_resp <> meta.io.resp // cpu tag check meta_arb.io.in(2).valid := io.cpu.req_val meta_arb.io.in(2).bits.idx := io.cpu.req_idx(indexmsb,indexlsb) meta_arb.io.in(2).bits.rw := Bool(false) meta_arb.io.in(2).bits.data.valid := Bool(false) // don't care meta_arb.io.in(2).bits.data.dirty := Bool(false) // don't care meta_arb.io.in(2).bits.data.tag := UFix(0) // don't care val early_tag_nack = !meta_arb.io.in(2).ready val tag_match = meta.io.resp.valid && (meta.io.resp.tag === io.cpu.req_ppn) val tag_hit = r_cpu_req_val && tag_match val tag_miss = r_cpu_req_val && !tag_match // refill counter val rr_count = Reg(resetVal = UFix(0, log2up(REFILL_CYCLES))) val rr_count_next = rr_count + UFix(1) when (io.mem.resp_val) { rr_count <== rr_count_next } // refill response val block_during_refill = !io.mem.resp_val && (rr_count != UFix(0)) data_arb.io.in(0).valid := io.mem.resp_val || block_during_refill data_arb.io.in(0).bits.offset := rr_count data_arb.io.in(0).bits.rw := !block_during_refill data_arb.io.in(0).bits.wmask := ~UFix(0, MEM_DATA_BITS/8) data_arb.io.in(0).bits.data := io.mem.resp_data // writeback val wb_rdy = wb_arb.io.in(1).ready wb_arb.io.in(1).valid := r_cpu_req_val && !tag_match && meta.io.resp.dirty wb_arb.io.in(1).bits.ppn := meta.io.resp.tag wb_arb.io.in(1).bits.idx := r_cpu_req_idx(indexmsb,indexlsb) // load hits data_arb.io.in(4).bits.offset := io.cpu.req_idx(offsetmsb,ramindexlsb) data_arb.io.in(4).bits.idx := io.cpu.req_idx(indexmsb,indexlsb) data_arb.io.in(4).bits.rw := Bool(false) data_arb.io.in(4).bits.wmask := UFix(0) // don't care data_arb.io.in(4).bits.data := io.mem.resp_data // don't care data_arb.io.in(4).valid := io.cpu.req_val && req_read val early_load_nack = req_read && !data_arb.io.in(4).ready // store hits. // we nack new stores if a pending store can't retire for some reason. // we drain a pending store if the CPU performs a store or a // conflictig load, or if the cache is idle, or after a miss. val p_store_match = r_cpu_req_val && r_req_read && p_store_valid && (r_cpu_req_idx(indexlsb-1,offsetlsb) === p_store_idx(indexlsb-1,offsetlsb)) val drain_store_val = (p_store_valid && (!io.cpu.req_val || req_store || Reg(tag_miss))) || p_store_match data_arb.io.in(2).bits.offset := p_store_idx(offsetmsb,ramindexlsb) data_arb.io.in(2).bits.idx := p_store_idx(indexmsb,indexlsb) data_arb.io.in(2).bits.rw := Bool(true) data_arb.io.in(2).bits.wmask := store_wmask_wide data_arb.io.in(2).bits.data := store_data_wide data_arb.io.in(2).valid := drain_store_val val drain_store_rdy = data_arb.io.in(2).ready val drain_store = drain_store_val && drain_store_rdy val p_store_notready = p_store_valid && !drain_store p_store_valid <== p_store_notready || (tag_hit && r_req_store) // tag update after a miss or a store to an exclusive clean line. val clear_valid = tag_miss && !r_req_flush && meta.io.resp.valid val set_dirty = tag_hit && !meta.io.resp.dirty && r_req_write meta.io.state_req.valid := clear_valid || set_dirty meta.io.state_req.bits.idx := r_cpu_req_idx(indexmsb,indexlsb) meta.io.state_req.bits.data.valid := tag_match meta.io.state_req.bits.data.dirty := tag_match // pending store data, also used for AMO RHS val storegen = new StoreDataGen storegen.io.typ := r_cpu_req_type storegen.io.addr := r_cpu_req_idx(offsetlsb-1, 0) storegen.io.din := r_cpu_req_data when (tag_hit && r_req_store && !p_store_notready) { p_store_idx <== r_cpu_req_idx p_store_type <== r_cpu_req_type p_store_data <== storegen.io.dout } // miss handling val mshr = new MSHRFile val replayer = new ReplayUnit mshr.io.req_val := tag_miss && !r_req_flush && !nack_mshr mshr.io.req_ppn := io.cpu.req_ppn mshr.io.req_idx := r_cpu_req_idx(indexmsb,indexlsb) mshr.io.req_data := p_store_data mshr.io.req_tag := r_cpu_req_tag mshr.io.req_offset := r_cpu_req_idx(offsetmsb,0) mshr.io.req_cmd := r_cpu_req_cmd mshr.io.req_type := r_cpu_req_type mshr.io.req_sdq_id := replayer.io.sdq_id mshr.io.mem_resp_val := io.mem.resp_val mshr.io.mem_resp_tag := io.mem.resp_tag mshr.io.mem_req <> mem_arb.io.in(1) mshr.io.meta_req <> meta_arb.io.in(1) mshr.io.replay <> replayer.io.replay replayer.io.sdq_enq.valid := tag_miss && r_req_write && !nack_sdq replayer.io.sdq_enq.bits := storegen.io.dout data_arb.io.in(0).bits.idx := mshr.io.mem_resp_idx // replays val replay = replayer.io.data_req.bits data_arb.io.in(3).bits.offset := replay.offset(offsetmsb,ramindexlsb) data_arb.io.in(3).bits.idx := replay.idx data_arb.io.in(3).bits.rw := replay.cmd === M_XWR data_arb.io.in(3).bits.wmask := store_wmask_wide data_arb.io.in(3).bits.data := store_data_wide data_arb.io.in(3).valid := replayer.io.data_req.valid replayer.io.data_req.ready := data_arb.io.in(3).ready // store write mask generation. // assumes pending stores are higher-priority than store replays. val maskgen = new StoreMaskGen val store_offset = Mux(drain_store_val, p_store_idx(offsetmsb,0), replay.offset) maskgen.io.typ := Mux(drain_store_val, p_store_type, replay.typ) maskgen.io.addr := store_offset(offsetlsb-1,0) store_wmask_wide <== maskgen.io.wmask << Cat(store_offset(ramindexlsb-1,offsetlsb), Bits(0, log2up(CPU_DATA_BITS/8))).toUFix val store_data = Mux(drain_store_val, p_store_data, replay.data) store_data_wide <== Fill(MEM_DATA_BITS/CPU_DATA_BITS, store_data) // load data subword mux/sign extension. // assumes load replays are higher-priority than load hits. // subword loads are delayed by one cycle. val loadgen = new LoadDataGen val loadgen_use_replay = Reg(replayer.io.data_req.valid) loadgen.io.typ := Mux(loadgen_use_replay, Reg(replay.typ), r_cpu_req_type) loadgen.io.addr := Mux(loadgen_use_replay, Reg(replay.offset), r_cpu_req_idx)(offsetlsb-1,0) loadgen.io.din := Slice(MEM_DATA_BITS/CPU_DATA_BITS, data.io.resp, r_cpu_req_idx(ramindexlsb-1,offsetlsb).toUFix) early_nack <== early_tag_nack || early_load_nack val nack_miss_wb = meta.io.resp.dirty && !wb_rdy val nack_miss_mshr = !mshr.io.req_rdy val nack_miss_sdq = r_req_write && !replayer.io.sdq_enq.ready nack_wb <== nack_miss_mshr || nack_miss_sdq || p_store_notready || p_store_match nack_mshr <== nack_miss_wb || nack_miss_sdq || p_store_notready || p_store_match nack_sdq <== nack_miss_wb || nack_miss_mshr || p_store_notready || p_store_match val nack_for_flush = r_req_flush && !flusher.io.req.ready val nack = p_store_match || r_req_store && p_store_notready || early_nack || tag_miss && !r_req_flush && (nack_miss_wb || nack_miss_mshr || nack_miss_sdq || p_store_notready) // report that cache is always ready. we nack instead. io.cpu.req_rdy := Bool(true) io.cpu.resp_nack := r_cpu_req_val_ && !io.cpu.req_kill && nack io.cpu.resp_val := (tag_hit && !nack && r_req_read) || flusher.io.resp.valid || replayer.io.cpu_resp_val io.cpu.resp_miss := tag_miss && !nack && r_req_read io.cpu.resp_tag := Mux(replayer.io.cpu_resp_val, replayer.io.cpu_resp_tag, Mux(flusher.io.resp.valid, flusher.io.resp.bits, r_cpu_req_tag)) io.cpu.resp_data := loadgen.io.dout io.cpu.resp_data_subword := loadgen.io.dout_subword val misaligned = (((r_cpu_req_type === MT_H) || (r_cpu_req_type === MT_HU)) && (r_cpu_req_idx(0) != Bits(0))) || (((r_cpu_req_type === MT_W) || (r_cpu_req_type === MT_WU)) && (r_cpu_req_idx(1,0) != Bits(0))) || ((r_cpu_req_type === MT_D) && (r_cpu_req_idx(2,0) != Bits(0))); io.cpu.xcpt_ma_ld := r_cpu_req_val_ && !io.cpu.req_kill && r_req_read && misaligned io.cpu.xcpt_ma_st := r_cpu_req_val_ && !io.cpu.req_kill && r_req_write && misaligned mem_arb.io.out.ready := io.mem.req_rdy io.mem.req_val := mem_arb.io.out.valid io.mem.req_rw := mem_arb.io.out.bits.rw io.mem.req_wdata := wb.io.mem_req_data io.mem.req_tag := mem_arb.io.out.bits.tag.toUFix io.mem.req_addr := mem_arb.io.out.bits.addr } }