package uncore import Chisel._ abstract class CacheConfig { def sets: Int def ways: Int def tl: TileLinkConfiguration def as: AddressSpaceConfiguration def dm: Boolean def states: Int def lines: Int def tagbits: Int def idxbits: Int def offbits: Int def untagbits: Int def rowbits: Int def metabits: Int def statebits: Int } case class L2CacheConfig(val sets: Int, val ways: Int, nReleaseTransactions: Int, nAcquireTransactions: Int, nrpq: Int, nsdq: Int, val tl: TileLinkConfiguration, val as: AddressSpaceConfiguration) extends CacheConfig { def databits = tl.dataBits def states = tl.co.nMasterStates def lines = sets*ways def dm = ways == 1 def offbits = 0 def lineaddrbits = tl.addrBits def idxbits = log2Up(sets) def waybits = log2Up(ways) def untagbits = offbits + idxbits def tagbits = lineaddrbits - idxbits def databytes = databits/8 def wordoffbits = log2Up(databytes) def rowbits = tl.dataBits def rowbytes = rowbits/8 def rowoffbits = log2Up(rowbytes) def refillcycles = tl.dataBits/(rowbits) def statebits = log2Up(states) def metabits = statebits + tagbits require(states > 0) require(isPow2(sets)) require(isPow2(ways)) // TODO: relax this require(rowbits == tl.dataBits) //TODO: relax this? } abstract trait CacheBundle extends Bundle { implicit val conf: CacheConfig override def clone = this.getClass.getConstructors.head.newInstance(conf).asInstanceOf[this.type] } abstract trait L2CacheBundle extends Bundle { implicit val conf: L2CacheConfig override def clone = this.getClass.getConstructors.head.newInstance(conf).asInstanceOf[this.type] } abstract class ReplacementPolicy { def way: UInt def miss: Unit def hit: Unit } class RandomReplacement(implicit val conf: CacheConfig) extends ReplacementPolicy { private val replace = Bool() replace := Bool(false) val lfsr = LFSR16(replace) def way = if(conf.dm) UInt(0) else lfsr(log2Up(conf.ways)-1,0) def miss = replace := Bool(true) def hit = {} } object L2MetaData { def apply(tag: Bits, state: UInt)(implicit conf: CacheConfig) = { val meta = new L2MetaData meta.state := state meta.tag := tag meta } } class L2MetaData(implicit val conf: CacheConfig) extends CacheBundle { val state = UInt(width = conf.statebits) val tag = Bits(width = conf.tagbits) } class L2MetaReadReq(implicit val conf: CacheConfig) extends CacheBundle { val idx = Bits(width = conf.idxbits) } class L2MetaWriteReq(implicit conf: CacheConfig) extends L2MetaReadReq()(conf) { val way_en = Bits(width = conf.ways) val data = new L2MetaData() } class L2MetaDataArray(implicit conf: CacheConfig) extends Module { implicit val tl = conf.tl val io = new Bundle { val read = Decoupled(new L2MetaReadReq).flip val write = Decoupled(new L2MetaWriteReq).flip val resp = Vec.fill(conf.ways){(new L2MetaData).asOutput} } val rst_cnt = Reg(init=UInt(0, log2Up(conf.sets+1))) val rst = rst_cnt < UInt(conf.sets) when (rst) { rst_cnt := rst_cnt+UInt(1) } val tags = Mem(UInt(width = conf.metabits*conf.ways), conf.sets, seqRead = true) when (rst || io.write.valid) { val addr = Mux(rst, rst_cnt, io.write.bits.idx) val data = Cat(Mux(rst, tl.co.newStateOnFlush, io.write.bits.data.state), io.write.bits.data.tag) val mask = Mux(rst, SInt(-1), io.write.bits.way_en) tags.write(addr, Fill(conf.ways, data), FillInterleaved(conf.metabits, mask)) } val tag = tags(RegEnable(io.read.bits.idx, io.read.valid)) for (w <- 0 until conf.ways) { val m = tag(conf.metabits*(w+1)-1, conf.metabits*w) io.resp(w).state := m >> UInt(conf.tagbits) io.resp(w).tag := m } io.read.ready := !rst && !io.write.valid // so really this could be a 6T RAM io.write.ready := !rst } class L2DataReadReq(implicit val conf: L2CacheConfig) extends L2CacheBundle { val way_en = Bits(width = conf.ways) val addr = Bits(width = conf.untagbits) } class L2DataWriteReq(implicit conf: L2CacheConfig) extends L2DataReadReq()(conf) { val wmask = Bits(width = conf.tl.writeMaskBits) val data = Bits(width = conf.rowbits) } class L2DataArray(implicit conf: L2CacheConfig) extends Module { val io = new Bundle { val read = Decoupled(new L2DataReadReq).flip val write = Decoupled(new L2DataWriteReq).flip val resp = Vec.fill(conf.ways){Bits(OUTPUT, conf.rowbits)} } val waddr = io.write.bits.addr >> UInt(conf.rowoffbits) val raddr = io.read.bits.addr >> UInt(conf.rowoffbits) val wmask = FillInterleaved(conf.databits, io.write.bits.wmask) for (w <- 0 until conf.ways) { val array = Mem(Bits(width=conf.rowbits), conf.sets*conf.refillcycles, seqRead = true) when (io.write.bits.way_en(w) && io.write.valid) { array.write(waddr, io.write.bits.data, wmask) } io.resp(w) := array(RegEnable(raddr, io.read.bits.way_en(w) && io.read.valid)) } io.read.ready := Bool(true) io.write.ready := Bool(true) } class L2HellaCache(bankId: Int)(implicit conf: L2CacheConfig) extends CoherenceAgent()(conf.tl) { implicit val (tl, ln, co) = (conf.tl, conf.tl.ln, conf.tl.co) // Create SHRs for outstanding transactions val nTrackers = conf.nReleaseTransactions + conf.nAcquireTransactions val trackerList = (0 until conf.nReleaseTransactions).map(id => Module(new L2VoluntaryReleaseTracker(id, bankId))) ++ (conf.nReleaseTransactions until nTrackers).map(id => Module(new L2AcquireTracker(id, bankId))) // Propagate incoherence flags trackerList.map(_.io.tile_incoherent := io.incoherent.toBits) // Handle acquire transaction initiation val acquire = io.client.acquire val any_acquire_conflict = trackerList.map(_.io.has_acquire_conflict).reduce(_||_) val block_acquires = any_acquire_conflict val alloc_arb = Module(new Arbiter(Bool(), trackerList.size)) for( i <- 0 until trackerList.size ) { val t = trackerList(i).io.client alloc_arb.io.in(i).valid := t.acquire.ready t.acquire.bits := acquire.bits t.acquire.valid := alloc_arb.io.in(i).ready } acquire.ready := trackerList.map(_.io.client.acquire.ready).reduce(_||_) && !block_acquires alloc_arb.io.out.ready := acquire.valid && !block_acquires // Handle probe request generation val probe_arb = Module(new Arbiter(new LogicalNetworkIO(new Probe), trackerList.size)) io.client.probe <> probe_arb.io.out probe_arb.io.in zip trackerList map { case (arb, t) => arb <> t.io.client.probe } // Handle releases, which might be voluntary and might have data val release = io.client.release val voluntary = co.isVoluntary(release.bits.payload) val any_release_conflict = trackerList.tail.map(_.io.has_release_conflict).reduce(_||_) val block_releases = Bool(false) val conflict_idx = Vec(trackerList.map(_.io.has_release_conflict)).lastIndexWhere{b: Bool => b} //val release_idx = Mux(voluntary, Mux(any_release_conflict, conflict_idx, UInt(0)), release.bits.payload.master_xact_id) // TODO: Add merging logic to allow allocated AcquireTracker to handle conflicts, send all necessary grants, use first sufficient response val release_idx = Mux(voluntary, UInt(0), release.bits.payload.master_xact_id) for( i <- 0 until trackerList.size ) { val t = trackerList(i).io.client t.release.bits := release.bits t.release.valid := release.valid && (release_idx === UInt(i)) && !block_releases } release.ready := Vec(trackerList.map(_.io.client.release.ready)).read(release_idx) && !block_releases // Reply to initial requestor val grant_arb = Module(new Arbiter(new LogicalNetworkIO(new Grant), trackerList.size)) io.client.grant <> grant_arb.io.out grant_arb.io.in zip trackerList map { case (arb, t) => arb <> t.io.client.grant } // Free finished transactions val ack = io.client.grant_ack trackerList.map(_.io.client.grant_ack.valid := ack.valid) trackerList.map(_.io.client.grant_ack.bits := ack.bits) ack.ready := Bool(true) // Create an arbiter for the one memory port val outer_arb = Module(new UncachedTileLinkIOArbiterThatPassesId(trackerList.size)) outer_arb.io.in zip trackerList map { case(arb, t) => arb <> t.io.master } io.master <> outer_arb.io.out } abstract class L2XactTracker()(implicit conf: L2CacheConfig) extends Module { implicit val (tl, ln, co) = (conf.tl, conf.tl.ln, conf.tl.co) val io = new Bundle { val client = (new TileLinkIO).flip val master = new UncachedTileLinkIO val tile_incoherent = Bits(INPUT, ln.nClients) val has_acquire_conflict = Bool(OUTPUT) val has_release_conflict = Bool(OUTPUT) } val c_acq = io.client.acquire.bits val c_rel = io.client.release.bits val c_gnt = io.client.grant.bits val c_ack = io.client.grant_ack.bits val m_gnt = io.master.grant.bits } class L2VoluntaryReleaseTracker(trackerId: Int, bankId: Int)(implicit conf: L2CacheConfig) extends L2XactTracker()(conf) { val s_idle :: s_mem :: s_ack :: s_busy :: Nil = Enum(UInt(), 4) val state = Reg(init=s_idle) val xact = Reg{ new Release } val init_client_id = Reg(init=UInt(0, width = log2Up(ln.nClients))) val incoming_rel = io.client.release.bits io.has_acquire_conflict := Bool(false) io.has_release_conflict := co.isCoherenceConflict(xact.addr, incoming_rel.payload.addr) && (state != s_idle) io.master.grant.ready := Bool(false) io.master.acquire.valid := Bool(false) io.master.acquire.bits.header.src := UInt(bankId) //io.master.acquire.bits.header.dst TODO io.master.acquire.bits.payload := Acquire(co.getUncachedWriteAcquireType, xact.addr, UInt(trackerId), xact.data) io.client.acquire.ready := Bool(false) io.client.probe.valid := Bool(false) io.client.release.ready := Bool(false) io.client.grant.valid := Bool(false) io.client.grant.bits.header.src := UInt(bankId) io.client.grant.bits.header.dst := init_client_id io.client.grant.bits.payload := Grant(co.getGrantType(xact, UInt(0)), xact.client_xact_id, UInt(trackerId)) switch (state) { is(s_idle) { io.client.release.ready := Bool(true) when( io.client.release.valid ) { xact := incoming_rel.payload init_client_id := incoming_rel.header.src state := Mux(co.messageHasData(incoming_rel.payload), s_mem, s_ack) } } is(s_mem) { io.master.acquire.valid := Bool(true) when(io.master.acquire.ready) { state := s_ack } } is(s_ack) { io.client.grant.valid := Bool(true) when(io.client.grant.ready) { state := s_idle } } } } class L2AcquireTracker(trackerId: Int, bankId: Int)(implicit conf: L2CacheConfig) extends L2XactTracker()(conf) { val s_idle :: s_probe :: s_mem_read :: s_mem_write :: s_make_grant :: s_busy :: Nil = Enum(UInt(), 6) val state = Reg(init=s_idle) val xact = Reg{ new Acquire } val init_client_id = Reg(init=UInt(0, width = log2Up(ln.nClients))) //TODO: Will need id reg for merged release xacts val init_sharer_cnt = Reg(init=UInt(0, width = log2Up(ln.nClients))) val release_count = if (ln.nClients == 1) UInt(0) else Reg(init=UInt(0, width = log2Up(ln.nClients))) val probe_flags = Reg(init=Bits(0, width = ln.nClients)) val curr_p_id = PriorityEncoder(probe_flags) val pending_outer_write = co.messageHasData(xact) val pending_outer_read = co.needsOuterRead(xact.a_type, UInt(0)) val outer_write_acq = Acquire(co.getUncachedWriteAcquireType, xact.addr, UInt(trackerId), xact.data) val outer_write_rel = Acquire(co.getUncachedWriteAcquireType, xact.addr, UInt(trackerId), c_rel.payload.data) val outer_read = Acquire(co.getUncachedReadAcquireType, xact.addr, UInt(trackerId)) val probe_initial_flags = Bits(width = ln.nClients) probe_initial_flags := Bits(0) if (ln.nClients > 1) { // issue self-probes for uncached read xacts to facilitate I$ coherence val probe_self = Bool(true) //co.needsSelfProbe(io.client.acquire.bits.payload) val myflag = Mux(probe_self, Bits(0), UIntToOH(c_acq.header.src(log2Up(ln.nClients)-1,0))) probe_initial_flags := ~(io.tile_incoherent | myflag) } io.has_acquire_conflict := co.isCoherenceConflict(xact.addr, c_acq.payload.addr) && (state != s_idle) io.has_release_conflict := co.isCoherenceConflict(xact.addr, c_rel.payload.addr) && (state != s_idle) io.master.acquire.valid := Bool(false) io.master.acquire.bits.header.src := UInt(bankId) //io.master.acquire.bits.header.dst TODO io.master.acquire.bits.payload := outer_read io.master.grant.ready := io.client.grant.ready io.client.probe.valid := Bool(false) io.client.probe.bits.header.src := UInt(bankId) io.client.probe.bits.header.dst := curr_p_id io.client.probe.bits.payload := Probe(co.getProbeType(xact.a_type, UInt(0)), xact.addr, UInt(trackerId)) val grant_type = co.getGrantType(xact.a_type, init_sharer_cnt) io.client.grant.valid := Bool(false) io.client.grant.bits.header.src := UInt(bankId) io.client.grant.bits.header.dst := init_client_id io.client.grant.bits.payload := Grant(grant_type, xact.client_xact_id, UInt(trackerId), m_gnt.payload.data) io.client.acquire.ready := Bool(false) io.client.release.ready := Bool(false) switch (state) { is(s_idle) { io.client.acquire.ready := Bool(true) val needs_outer_write = co.messageHasData(c_acq.payload) val needs_outer_read = co.needsOuterRead(c_acq.payload.a_type, UInt(0)) when( io.client.acquire.valid ) { xact := c_acq.payload init_client_id := c_acq.header.src init_sharer_cnt := UInt(ln.nClients) // TODO: Broadcast only probe_flags := probe_initial_flags if(ln.nClients > 1) { release_count := PopCount(probe_initial_flags) state := Mux(probe_initial_flags.orR, s_probe, Mux(needs_outer_write, s_mem_write, Mux(needs_outer_read, s_mem_read, s_make_grant))) } else state := Mux(needs_outer_write, s_mem_write, Mux(needs_outer_read, s_mem_read, s_make_grant)) } } is(s_probe) { // Generate probes io.client.probe.valid := probe_flags.orR when(io.client.probe.ready) { probe_flags := probe_flags & ~(UIntToOH(curr_p_id)) } // Handle releases, which may have data to be written back when(io.client.release.valid) { when(co.messageHasData(c_rel.payload)) { io.master.acquire.valid := Bool(true) io.master.acquire.bits.payload := outer_write_rel when(io.master.acquire.ready) { io.client.release.ready := Bool(true) if(ln.nClients > 1) release_count := release_count - UInt(1) when(release_count === UInt(1)) { state := Mux(pending_outer_write, s_mem_write, Mux(pending_outer_read, s_mem_read, s_make_grant)) } } } .otherwise { io.client.release.ready := Bool(true) if(ln.nClients > 1) release_count := release_count - UInt(1) when(release_count === UInt(1)) { state := Mux(pending_outer_write, s_mem_write, Mux(pending_outer_read, s_mem_read, s_make_grant)) } } } } is(s_mem_read) { io.master.acquire.valid := Bool(true) io.master.acquire.bits.payload := outer_read when(io.master.acquire.ready) { state := Mux(co.requiresAckForGrant(grant_type), s_busy, s_idle) } } is(s_mem_write) { io.master.acquire.valid := Bool(true) io.master.acquire.bits.payload := outer_write_acq when(io.master.acquire.ready) { state := Mux(pending_outer_read, s_mem_read, s_make_grant) } } is(s_make_grant) { io.client.grant.valid := Bool(true) when(io.client.grant.ready) { state := Mux(co.requiresAckForGrant(grant_type), s_busy, s_idle) } } is(s_busy) { // Nothing left to do but wait for transaction to complete when(io.master.grant.valid && m_gnt.payload.client_xact_id === UInt(trackerId)) { io.client.grant.valid := Bool(true) } when(io.client.grant_ack.valid && c_ack.payload.master_xact_id === UInt(trackerId)) { state := s_idle } } } }