// See LICENSE for license details. package uncore import Chisel._ case object CacheName extends Field[String] case object NSets extends Field[Int] case object NWays extends Field[Int] case object BlockOffBits extends Field[Int] case object RowBits extends Field[Int] case object WordBits extends Field[Int] case object Replacer extends Field[() => ReplacementPolicy] abstract trait CacheParameters extends UsesParameters { val paddrBits = params(PAddrBits) val vaddrBits = params(VAddrBits) val pgIdxBits = params(PgIdxBits) val nSets = params(NSets) val blockOffBits = params(BlockOffBits) val idxBits = log2Up(nSets) val untagBits = blockOffBits + idxBits val tagBits = paddrBits - untagBits val nWays = params(NWays) val wayBits = log2Up(nWays) val isDM = nWays == 1 val wordBits = params(WordBits) val wordBytes = wordBits/8 val wordOffBits = log2Up(wordBytes) val rowBits = params(RowBits) val rowWords = rowBits/wordBits val rowBytes = rowBits/8 val rowOffBits = log2Up(rowBytes) val refillCyclesPerBeat = params(TLDataBits)/rowBits val refillCycles = refillCyclesPerBeat*params(TLDataBeats) } abstract class CacheBundle extends Bundle with CacheParameters abstract class CacheModule extends Module with CacheParameters abstract class ReplacementPolicy { def way: UInt def miss: Unit def hit: Unit } class RandomReplacement(ways: Int) extends ReplacementPolicy { private val replace = Bool() replace := Bool(false) val lfsr = LFSR16(replace) def way = if(ways == 1) UInt(0) else lfsr(log2Up(ways)-1,0) def miss = replace := Bool(true) def hit = {} } abstract class Metadata extends CacheBundle { val tag = Bits(width = tagBits) val coh: CoherenceMetadata } class MetaReadReq extends CacheBundle { val idx = Bits(width = idxBits) } class MetaWriteReq[T <: Metadata](gen: T) extends MetaReadReq { val way_en = Bits(width = nWays) val data = gen.clone override def clone = new MetaWriteReq(gen).asInstanceOf[this.type] } class MetadataArray[T <: Metadata](makeRstVal: () => T) extends CacheModule { val rstVal = makeRstVal() val io = new Bundle { val read = Decoupled(new MetaReadReq).flip val write = Decoupled(new MetaWriteReq(rstVal.clone)).flip val resp = Vec.fill(nWays){rstVal.clone.asOutput} } val metabits = rstVal.getWidth val rst_cnt = Reg(init=UInt(0, log2Up(nSets+1))) val rst = rst_cnt < UInt(nSets) val waddr = Mux(rst, rst_cnt, io.write.bits.idx) val wdata = Mux(rst, rstVal, io.write.bits.data).toBits val wmask = Mux(rst, SInt(-1), io.write.bits.way_en) when (rst) { rst_cnt := rst_cnt+UInt(1) } val tag_arr = Mem(UInt(width = metabits*nWays), nSets, seqRead = true) when (rst || io.write.valid) { tag_arr.write(waddr, Fill(nWays, wdata), FillInterleaved(metabits, wmask)) } val tags = tag_arr(RegEnable(io.read.bits.idx, io.read.valid)) for (w <- 0 until nWays) { val m = tags(metabits*(w+1)-1, metabits*w) io.resp(w) := rstVal.clone.fromBits(m) } io.read.ready := !rst && !io.write.valid // so really this could be a 6T RAM io.write.ready := !rst } abstract trait L2HellaCacheParameters extends CacheParameters with CoherenceAgentParameters abstract class L2HellaCacheBundle extends Bundle with L2HellaCacheParameters abstract class L2HellaCacheModule extends Module with L2HellaCacheParameters trait HasL2Id extends Bundle with CoherenceAgentParameters { val id = UInt(width = log2Up(nTransactors)) } trait HasL2InternalRequestState extends L2HellaCacheBundle { val tag_match = Bool() val meta = new L2Metadata val way_en = Bits(width = nWays) } object L2Metadata { def apply(tag: Bits, coh: MasterMetadata) = { val meta = new L2Metadata meta.tag := tag meta.coh := coh meta } } class L2Metadata extends Metadata with L2HellaCacheParameters { val coh = new MasterMetadata()(co) //co.masterMetadataOnFlush.clone } class L2MetaReadReq extends MetaReadReq with HasL2Id { val tag = Bits(width = tagBits) } class L2MetaWriteReq extends MetaWriteReq[L2Metadata](new L2Metadata) with HasL2Id { override def clone = new L2MetaWriteReq().asInstanceOf[this.type] } class L2MetaResp extends L2HellaCacheBundle with HasL2Id with HasL2InternalRequestState trait HasL2MetaReadIO extends L2HellaCacheBundle { val read = Decoupled(new L2MetaReadReq) val resp = Valid(new L2MetaResp).flip } trait HasL2MetaWriteIO extends L2HellaCacheBundle { val write = Decoupled(new L2MetaWriteReq) } class L2MetaRWIO extends L2HellaCacheBundle with HasL2MetaReadIO with HasL2MetaWriteIO class L2MetadataArray extends L2HellaCacheModule { val io = new L2MetaRWIO().flip val meta = Module(new MetadataArray(() => L2Metadata(UInt(0), co.masterMetadataOnFlush))) meta.io.read <> io.read meta.io.write <> io.write val s1_clk_en = Reg(next = io.read.fire()) val s1_tag = RegEnable(io.read.bits.tag, io.read.valid) val s1_id = RegEnable(io.read.bits.id, io.read.valid) def wayMap[T <: Data](f: Int => T) = Vec((0 until nWays).map(f)) val s1_tag_eq_way = wayMap((w: Int) => meta.io.resp(w).tag === s1_tag) val s1_tag_match_way = wayMap((w: Int) => s1_tag_eq_way(w) && co.isValid(meta.io.resp(w).coh)).toBits val s2_tag_match_way = RegEnable(s1_tag_match_way, s1_clk_en) val s2_tag_match = s2_tag_match_way.orR val s2_hit_coh = Mux1H(s2_tag_match_way, wayMap((w: Int) => RegEnable(meta.io.resp(w).coh, s1_clk_en))) val replacer = params(Replacer)() val s1_replaced_way_en = UIntToOH(replacer.way) val s2_replaced_way_en = UIntToOH(RegEnable(replacer.way, s1_clk_en)) val s2_repl_meta = Mux1H(s2_replaced_way_en, wayMap((w: Int) => RegEnable(meta.io.resp(w), s1_clk_en && s1_replaced_way_en(w))).toSeq) when(!s2_tag_match) { replacer.miss } io.resp.valid := Reg(next = s1_clk_en) io.resp.bits.id := RegEnable(s1_id, s1_clk_en) io.resp.bits.tag_match := s2_tag_match io.resp.bits.meta := Mux(s2_tag_match, L2Metadata(s2_repl_meta.tag, s2_hit_coh), s2_repl_meta) io.resp.bits.way_en := Mux(s2_tag_match, s2_tag_match_way, s2_replaced_way_en) } class L2DataReadReq extends L2HellaCacheBundle with HasL2Id { val way_en = Bits(width = nWays) val addr = Bits(width = tlAddrBits) } class L2DataWriteReq extends L2DataReadReq { val wmask = Bits(width = tlWriteMaskBits) val data = Bits(width = tlDataBits) } class L2DataResp extends Bundle with HasL2Id with TileLinkParameters { val data = Bits(width = tlDataBits) } trait HasL2DataReadIO extends L2HellaCacheBundle { val read = Decoupled(new L2DataReadReq) val resp = Valid(new L2DataResp).flip } trait HasL2DataWriteIO extends L2HellaCacheBundle { val write = Decoupled(new L2DataWriteReq) } class L2DataRWIO extends L2HellaCacheBundle with HasL2DataReadIO with HasL2DataWriteIO class L2DataArray extends L2HellaCacheModule { val io = new L2DataRWIO().flip val waddr = io.write.bits.addr val raddr = io.read.bits.addr val wmask = FillInterleaved(8, io.write.bits.wmask) val resp = (0 until nWays).map { w => val array = Mem(Bits(width=rowBits), nSets*refillCycles, seqRead = true) when (io.write.bits.way_en(w) && io.write.valid) { array.write(waddr, io.write.bits.data, wmask) } array(RegEnable(raddr, io.read.bits.way_en(w) && io.read.valid)) } io.resp.valid := ShiftRegister(io.read.valid, 2) io.resp.bits.id := ShiftRegister(io.read.bits.id, 2) io.resp.bits.data := Mux1H(ShiftRegister(io.read.bits.way_en, 2), resp) io.read.ready := Bool(true) io.write.ready := Bool(true) } class L2HellaCache(bankId: Int, innerId: String, outerId: String) extends CoherenceAgent(innerId, outerId) with L2HellaCacheParameters { require(isPow2(nSets)) require(isPow2(nWays)) require(refillCycles == 1) val tshrfile = Module(new TSHRFile(bankId, innerId, outerId)) val meta = Module(new L2MetadataArray) val data = Module(new L2DataArray) tshrfile.io.inner <> io.inner tshrfile.io.meta <> meta.io tshrfile.io.data <> data.io io.outer <> tshrfile.io.outer io.incoherent <> tshrfile.io.incoherent } class TSHRFile(bankId: Int, innerId: String, outerId: String) extends L2HellaCacheModule { val io = new Bundle { val inner = Bundle(new TileLinkIO, {case TLId => innerId}).flip val outer = Bundle(new UncachedTileLinkIO, {case TLId => outerId}) val incoherent = Vec.fill(nClients){Bool()}.asInput val meta = new L2MetaRWIO val data = new L2DataRWIO } // Wiring helper funcs def doOutputArbitration[T <: Data](out: DecoupledIO[T], ins: Seq[DecoupledIO[T]]) { val arb = Module(new RRArbiter(out.bits.clone, ins.size)) out <> arb.io.out arb.io.in zip ins map { case (a, in) => a <> in } } def doInputRouting[T <: HasL2Id](in: ValidIO[T], outs: Seq[ValidIO[T]]) { outs.map(_.bits := in.bits) outs.zipWithIndex.map { case (o, i) => o.valid := in.valid && (UInt(i) === in.bits.id) } } // Create TSHRs for outstanding transactions val trackerList = (0 until nReleaseTransactors).map { id => Module(new L2VoluntaryReleaseTracker(id, bankId, innerId, outerId)) } ++ (nReleaseTransactors until nTransactors).map { id => Module(new L2AcquireTracker(id, bankId, innerId, outerId)) } // Propagate incoherence flags trackerList.map(_.io.tile_incoherent := io.incoherent.toBits) // Handle acquire transaction initiation val acquire = io.inner.acquire val any_acquire_conflict = trackerList.map(_.io.has_acquire_conflict).reduce(_||_) val block_acquires = any_acquire_conflict val alloc_arb = Module(new Arbiter(Bool(), trackerList.size)) for( i <- 0 until trackerList.size ) { val t = trackerList(i).io.inner alloc_arb.io.in(i).valid := t.acquire.ready t.acquire.bits := acquire.bits t.acquire.valid := alloc_arb.io.in(i).ready } acquire.ready := trackerList.map(_.io.inner.acquire.ready).reduce(_||_) && !block_acquires alloc_arb.io.out.ready := acquire.valid && !block_acquires // Handle probe requests doOutputArbitration(io.inner.probe, trackerList.map(_.io.inner.probe)) // Handle releases, which might be voluntary and might have data val release = io.inner.release val voluntary = co.isVoluntary(release.bits.payload) val any_release_conflict = trackerList.tail.map(_.io.has_release_conflict).reduce(_||_) val block_releases = Bool(false) val conflict_idx = Vec(trackerList.map(_.io.has_release_conflict)).lastIndexWhere{b: Bool => b} val release_idx = Mux(voluntary, Mux(any_release_conflict, conflict_idx, UInt(0)), conflict_idx) for( i <- 0 until trackerList.size ) { val t = trackerList(i).io.inner t.release.bits := release.bits t.release.valid := release.valid && (release_idx === UInt(i)) && !block_releases } release.ready := Vec(trackerList.map(_.io.inner.release.ready)).read(release_idx) && !block_releases // Reply to initial requestor doOutputArbitration(io.inner.grant, trackerList.map(_.io.inner.grant)) // Free finished transactions on ack val finish = io.inner.finish val finish_idx = finish.bits.payload.master_xact_id trackerList.zipWithIndex.map { case (t, i) => t.io.inner.finish.valid := finish.valid && finish_idx === UInt(i) } trackerList.map(_.io.inner.finish.bits := finish.bits) finish.ready := Vec(trackerList.map(_.io.inner.finish.ready)).read(finish_idx) // Arbitrate for the outer memory port val outer_arb = Module(new UncachedTileLinkIOArbiterThatPassesId(trackerList.size), {case TLId => outerId}) outer_arb.io.in zip trackerList map { case(arb, t) => arb <> t.io.outer } io.outer <> outer_arb.io.out // Local memory doOutputArbitration(io.meta.read, trackerList.map(_.io.meta.read)) doOutputArbitration(io.meta.write, trackerList.map(_.io.meta.write)) doOutputArbitration(io.data.read, trackerList.map(_.io.data.read)) doOutputArbitration(io.data.write, trackerList.map(_.io.data.write)) doInputRouting(io.meta.resp, trackerList.map(_.io.meta.resp)) doInputRouting(io.data.resp, trackerList.map(_.io.data.resp)) } abstract class L2XactTracker(innerId: String, outerId: String) extends L2HellaCacheModule { val io = new Bundle { val inner = Bundle(new TileLinkIO, {case TLId => innerId}).flip val outer = Bundle(new UncachedTileLinkIO, {case TLId => outerId}) val tile_incoherent = Bits(INPUT, nClients) val has_acquire_conflict = Bool(OUTPUT) val has_release_conflict = Bool(OUTPUT) val data = new L2DataRWIO val meta = new L2MetaRWIO } val c_acq = io.inner.acquire.bits val c_rel = io.inner.release.bits val c_gnt = io.inner.grant.bits val c_ack = io.inner.finish.bits val m_gnt = io.outer.grant.bits def mergeData(acq: Acquire, data: UInt): UInt = { //TODO wite mask Mux(co.messageHasData(acq), acq.data, data) } } class L2VoluntaryReleaseTracker(trackerId: Int, bankId: Int, innerId: String, outerId: String) extends L2XactTracker(innerId, outerId) { val s_idle :: s_meta_read :: s_meta_resp :: s_data_write :: s_meta_write :: s_grant :: s_busy :: Nil = Enum(UInt(), 7) val state = Reg(init=s_idle) val xact = Reg{ new Release } val xact_internal = Reg{ new L2MetaResp } val init_client_id = Reg(init=UInt(0, width = log2Up(nClients))) io.has_acquire_conflict := Bool(false) io.has_release_conflict := co.isCoherenceConflict(xact.addr, c_rel.payload.addr) && (state != s_idle) io.outer.grant.ready := Bool(false) io.outer.acquire.valid := Bool(false) io.inner.acquire.ready := Bool(false) io.inner.probe.valid := Bool(false) io.inner.release.ready := Bool(false) io.inner.grant.valid := Bool(false) io.inner.finish.ready := Bool(false) io.inner.grant.bits.header.src := UInt(bankId) io.inner.grant.bits.header.dst := init_client_id io.inner.grant.bits.payload := Grant(Bool(false), co.getGrantTypeOnVoluntaryWriteback(xact_internal.meta.coh), xact.client_xact_id, UInt(trackerId)) io.data.read.valid := Bool(false) io.data.write.valid := Bool(false) io.data.write.bits.id := UInt(trackerId) io.data.write.bits.way_en := xact_internal.way_en io.data.write.bits.addr := xact.addr io.data.write.bits.wmask := SInt(-1) io.data.write.bits.data := xact.data io.meta.read.valid := Bool(false) io.meta.read.bits.id := UInt(trackerId) io.meta.read.bits.idx := xact.addr(untagBits-1,blockOffBits) io.meta.read.bits.tag := xact.addr >> UInt(untagBits) io.meta.write.valid := Bool(false) io.meta.write.bits.id := UInt(trackerId) io.meta.write.bits.idx := xact.addr(untagBits-1,blockOffBits) io.meta.write.bits.way_en := xact_internal.way_en io.meta.write.bits.data.tag := xact.addr >> UInt(untagBits) io.meta.write.bits.data.coh := co.masterMetadataOnRelease(xact, xact_internal.meta.coh, init_client_id) switch (state) { is(s_idle) { io.inner.release.ready := Bool(true) when( io.inner.release.valid ) { xact := c_rel.payload init_client_id := c_rel.header.src state := s_meta_read } } is(s_meta_read) { io.meta.read.valid := Bool(true) when(io.meta.read.ready) { state := s_meta_resp } } is(s_meta_resp) { when(io.meta.resp.valid) { xact_internal := io.meta.resp.bits state := Mux(io.meta.resp.bits.tag_match, Mux(co.messageHasData(xact), s_data_write, s_meta_write), s_grant) } } is(s_data_write) { io.data.write.valid := Bool(true) when(io.data.write.ready) { state := s_meta_write } } is(s_meta_write) { io.meta.write.valid := Bool(true) when(io.meta.write.ready) { state := s_grant } } is(s_grant) { io.inner.grant.valid := Bool(true) when(io.inner.grant.ready) { state := Mux(co.requiresAckForGrant(c_gnt.payload), s_busy, s_idle) } } is(s_busy) { io.inner.finish.ready := Bool(true) when(io.inner.finish.valid) { state := s_idle } } } } class L2AcquireTracker(trackerId: Int, bankId: Int, innerId: String, outerId: String) extends L2XactTracker(innerId, outerId) { val s_idle :: s_meta_read :: s_meta_resp :: s_probe :: s_data_read_wb :: s_data_resp_wb :: s_outer_write_wb :: s_outer_read :: s_outer_resp :: s_data_read_hit :: s_data_resp_hit :: s_data_write :: s_outer_write_acq :: s_meta_write :: s_grant :: s_busy :: Nil = Enum(UInt(), 16) val state = Reg(init=s_idle) val xact = Reg{ new Acquire } val xact_internal = Reg{ new L2MetaResp } val init_client_id = Reg(init = UInt(0, width = log2Up(nClients))) val crel_had_data = Reg(init = Bool(false)) val crel_was_voluntary = Reg(init = Bool(false)) val crel_wb_src = Reg(init = UInt(0, width = log2Up(nClients))) val crel_wb_g_type = Reg(init = UInt(0, width = co.grantTypeWidth)) val wb_buffer = Reg{xact.data.clone} val addr_wb = Cat(xact_internal.meta.tag, xact.addr(untagBits-1,blockOffBits)) val release_count = Reg(init = UInt(0, width = log2Up(nClients+1))) val pending_probes = Reg(init = co.dir().flush) val curr_p_id = co.dir().next(pending_probes) val is_uncached = xact.uncached val tag_match = xact_internal.tag_match val needs_writeback = !tag_match && co.needsWriteback(xact_internal.meta.coh) val is_hit = tag_match && co.isHit(xact, xact_internal.meta.coh) val needs_probes = co.requiresProbes(xact, xact_internal.meta.coh) //TODO: does allocate io.has_acquire_conflict := co.isCoherenceConflict(xact.addr, c_acq.payload.addr) && (state != s_idle) //TODO: Also indexes io.has_release_conflict := (co.isCoherenceConflict(xact.addr, c_rel.payload.addr) || co.isCoherenceConflict(addr_wb, c_rel.payload.addr)) && (state != s_idle) //TODO: Also indexes? val next_coh_on_release = co.masterMetadataOnRelease( c_rel.payload, xact_internal.meta.coh, c_rel.header.src) val next_coh_on_grant = co.masterMetadataOnGrant( c_gnt.payload, xact_internal.meta.coh, c_gnt.header.dst) val outer_write_acq = Bundle(UncachedWrite(xact.addr, UInt(trackerId), xact.data), { case TLId => outerId }) val outer_write_wb = Bundle(UncachedWrite(addr_wb, UInt(trackerId), wb_buffer), { case TLId => outerId }) val outer_read = Bundle(UncachedRead( xact.addr, UInt(trackerId)), { case TLId => outerId }) io.outer.acquire.valid := Bool(false) io.outer.acquire.bits.payload := outer_read //default io.outer.acquire.bits.header.src := UInt(bankId) io.outer.grant.ready := Bool(true) //grant.data -> xact.data val cprb_for_cacq = Probe(co.getProbeType(xact, xact_internal.meta.coh), xact.addr) val cprb_for_mwb = Probe(co.getProbeTypeOnVoluntaryWriteback, addr_wb) //TODO inner_probe_mprb io.inner.probe.valid := Bool(false) io.inner.probe.bits.header.src := UInt(bankId) io.inner.probe.bits.header.dst := curr_p_id io.inner.probe.bits.payload := Mux(!tag_match && needs_writeback, cprb_for_mwb, cprb_for_cacq) val cgnt_for_cacq = Grant(xact.uncached, co.getGrantType(xact, xact_internal.meta.coh), xact.client_xact_id, UInt(trackerId), xact.data) val cgnt_for_cwb = Grant(Bool(false), crel_wb_g_type, UInt(0), UInt(trackerId), UInt(0)) io.inner.grant.valid := Bool(false) io.inner.grant.bits.header.src := UInt(bankId) io.inner.grant.bits.header.dst := Mux(crel_was_voluntary, crel_wb_src, init_client_id) io.inner.grant.bits.payload := Mux(crel_was_voluntary, cgnt_for_cwb, cgnt_for_cacq) io.inner.acquire.ready := Bool(false) io.inner.release.ready := Bool(false) io.inner.finish.ready := Bool(false) io.data.read.valid := Bool(false) io.data.read.bits.id := UInt(trackerId) io.data.read.bits.way_en := xact_internal.way_en io.data.read.bits.addr := xact.addr io.data.write.valid := Bool(false) io.data.write.bits.id := UInt(trackerId) io.data.write.bits.way_en := xact_internal.way_en io.data.write.bits.addr := xact.addr io.data.write.bits.wmask := SInt(-1) io.data.write.bits.data := xact.data io.meta.read.valid := Bool(false) io.meta.read.bits.id := UInt(trackerId) io.meta.read.bits.idx := xact.addr(untagBits-1,blockOffBits) io.meta.read.bits.tag := xact.addr >> UInt(untagBits) io.meta.write.valid := Bool(false) io.meta.write.bits.id := UInt(trackerId) io.meta.write.bits.idx := xact.addr(untagBits-1,blockOffBits) io.meta.write.bits.way_en := xact_internal.way_en io.meta.write.bits.data.tag := xact.addr >> UInt(untagBits) io.meta.write.bits.data.coh := next_coh_on_grant switch (state) { is(s_idle) { io.inner.acquire.ready := Bool(true) when( io.inner.acquire.valid ) { xact := c_acq.payload init_client_id := c_acq.header.src state := s_meta_read } } is(s_meta_read) { io.meta.read.valid := Bool(true) when(io.meta.read.ready) { state := s_meta_resp } } is(s_meta_resp) { when(io.meta.resp.valid) { val coh = io.meta.resp.bits.meta.coh val _tag_match = io.meta.resp.bits.tag_match val _needs_writeback = !_tag_match && co.needsWriteback(coh) val _is_hit = _tag_match && co.isHit(xact, coh) val _needs_probes = co.requiresProbes(xact, coh) xact_internal := io.meta.resp.bits when(_needs_probes) { val mask_incoherent = co.dir().full(coh.sharers) & ~io.tile_incoherent val mask_self = mask_incoherent & ~(!(co.requiresSelfProbe(xact) || _needs_writeback) << init_client_id) pending_probes := mask_self release_count := co.dir().count(mask_self) crel_had_data := Bool(false) crel_was_voluntary := Bool(false) } state := Mux(_tag_match, Mux(_is_hit, Mux(_needs_probes, s_probe, s_data_read_hit), Mux(_needs_probes, s_probe, s_outer_read)), Mux(_needs_writeback, Mux(_needs_probes, s_probe, s_data_read_wb), s_outer_read)) } } is(s_probe) { io.inner.probe.valid := !co.dir().none(pending_probes) when(io.inner.probe.ready) { pending_probes := co.dir().pop(pending_probes, curr_p_id) } // Handle releases, which may have data being written back io.inner.release.ready := Bool(true) when(io.inner.release.valid) { xact_internal.meta.coh := next_coh_on_release when(co.messageHasData(c_rel.payload)) { crel_had_data := Bool(true) when(tag_match) { xact.data := mergeData(xact, io.inner.release.bits.payload.data) } .otherwise { wb_buffer := io.inner.release.bits.payload.data } } when(co.isVoluntary(c_rel.payload)) { crel_was_voluntary := Bool(true) crel_wb_src := c_rel.header.src crel_wb_g_type := co.getGrantTypeOnVoluntaryWriteback(xact_internal.meta.coh) } when(!co.isVoluntary(c_rel.payload)) { release_count := release_count - UInt(1) } } when(crel_was_voluntary) { io.inner.grant.valid := Bool(true) when(io.inner.grant.ready) { crel_was_voluntary := Bool(false) } } when(release_count === UInt(0) && !crel_was_voluntary) { state := Mux(tag_match, Mux(is_hit, Mux(crel_had_data, s_data_write, s_data_read_hit), s_outer_read), Mux(crel_had_data, s_outer_write_wb, s_data_read_wb)) } } is(s_data_read_wb) { io.data.read.valid := Bool(true) when(io.data.read.ready) { state := s_data_resp_wb } } is(s_data_resp_wb) { when(io.data.resp.valid) { wb_buffer := io.data.resp.bits.data state := s_outer_write_wb } } is(s_outer_write_wb) { io.outer.acquire.valid := Bool(true) io.outer.acquire.bits.payload := outer_write_wb when(io.outer.acquire.ready) { state := s_outer_read } } is(s_outer_read) { io.outer.acquire.valid := Bool(true) io.outer.acquire.bits.payload := outer_read when(io.outer.acquire.ready) { state := s_outer_resp } } is(s_outer_resp) { io.outer.grant.ready := Bool(true) when(io.outer.grant.valid) { xact.data := mergeData(xact, io.outer.grant.bits.payload.data) //TODO: set pending client state in xact_internal.meta.coh state := Mux(co.messageHasData(io.outer.grant.bits.payload), s_data_write, s_data_read_hit) } } is(s_data_read_hit) { io.data.read.valid := Bool(true) when(io.data.read.ready) { state := s_data_resp_hit } } is(s_data_resp_hit) { when(io.data.resp.valid) { xact.data := mergeData(xact, io.data.resp.bits.data) state := s_meta_write } } is(s_data_write) { io.data.write.valid := Bool(true) when(io.data.write.ready) { state := s_meta_write } } is(s_meta_write) { io.meta.write.valid := Bool(true) when(io.meta.write.ready) { state := s_grant } } is(s_grant) { io.inner.grant.valid := Bool(true) when(io.inner.grant.ready) { state := Mux(co.requiresAckForGrant(c_gnt.payload), s_busy, s_idle) } } is(s_busy) { io.inner.finish.ready := Bool(true) when(io.inner.finish.valid) { state := s_idle } } } }