package rocket import Chisel._ import scala.math._ object Constants { val BR_N = UFix(0, 4); val BR_EQ = UFix(1, 4); val BR_NE = UFix(2, 4); val BR_LT = UFix(3, 4); val BR_LTU = UFix(4, 4); val BR_GE = UFix(5, 4); val BR_GEU = UFix(6, 4); val BR_J = UFix(7, 4); val BR_JR = UFix(8, 4); val PC_4 = UFix(0, 3); val PC_BTB = UFix(1, 3); val PC_EX4 = UFix(2, 3); val PC_BR = UFix(3, 3); val PC_PCR = UFix(4, 3); val PC_WB = UFix(5, 3); val PC_EVEC = UFix(6, 3); val PC_JR = UFix(7, 3); val REN_Y = UFix(1, 1); val REN_N = UFix(0, 1); val A2_X = UFix(0, 3); val A2_BTYPE = UFix(0, 3); val A2_LTYPE = UFix(1, 3); val A2_ITYPE = UFix(2, 3); val A2_ZERO = UFix(4, 3); val A2_JTYPE = UFix(5, 3); val A2_RTYPE = UFix(6, 3); val MUL_X = UFix(0, 2); val MUL_LO = UFix(0, 2); val MUL_H = UFix(1, 2); val MUL_HSU = UFix(2, 2); val MUL_HU = UFix(3, 2); val DIV_X = UFix(0, 2); val DIV_D = UFix(0, 2); val DIV_DU = UFix(1, 2); val DIV_R = UFix(2, 2); val DIV_RU = UFix(3, 2); val M_N = UFix(0, 1); val M_Y = UFix(1, 1); val WEN_N = UFix(0, 1); val WEN_Y = UFix(1, 1); val WA_X = UFix(0, 1); val WA_RD = UFix(0, 1); val WA_RA = UFix(1, 1); val WB_X = UFix(0, 3); val WB_PC = UFix(0, 3); val WB_PCR = UFix(1, 3); val WB_ALU = UFix(2, 3); val WB_TSC = UFix(4, 3); val WB_IRT = UFix(5, 3); val N = UFix(0, 1); val Y = UFix(1, 1); val FN_X = UFix(0, 4); val FN_ADD = UFix(0, 4); val FN_SUB = UFix(1, 4); val FN_SLT = UFix(2, 4); val FN_SLTU = UFix(3, 4); val FN_AND = UFix(4, 4); val FN_OR = UFix(5, 4); val FN_XOR = UFix(6, 4); val FN_SL = UFix(7, 4); val FN_SR = UFix(8, 4); val FN_SRA = UFix(9, 4); val FN_OP2 = UFix(10, 4); val DW_X = UFix(0, 1); val DW_32 = UFix(0, 1); val DW_64 = UFix(1, 1); val DW_XPR = UFix(1, 1); val RA = UFix(1, 5); val MT_X = Bits("b000", 3); val MT_B = Bits("b000", 3); val MT_H = Bits("b001", 3); val MT_W = Bits("b010", 3); val MT_D = Bits("b011", 3); val MT_BU = Bits("b100", 3); val MT_HU = Bits("b101", 3); val MT_WU = Bits("b110", 3); val M_X = UFix(0, 4); val M_XRD = Bits("b0000", 4); // int load val M_XWR = Bits("b0001", 4); // int store val M_PFR = Bits("b0010", 4); // prefetch with intent to read val M_PFW = Bits("b0011", 4); // prefetch with intent to write val M_FLA = Bits("b0100", 4); // write back and invlaidate all lines val M_FENCE = Bits("b0101", 4); // memory fence val M_INV = Bits("b0110", 4); // write back and invalidate line val M_CLN = Bits("b0111", 4); // write back line val M_XA_ADD = Bits("b1000", 4); val M_XA_SWAP = Bits("b1001", 4); val M_XA_AND = Bits("b1010", 4); val M_XA_OR = Bits("b1011", 4); val M_XA_MIN = Bits("b1100", 4); val M_XA_MAX = Bits("b1101", 4); val M_XA_MINU = Bits("b1110", 4); val M_XA_MAXU = Bits("b1111", 4); val I_X = Bits(0,2); val I_DI = Bits(1,2); val I_EI = Bits(2,2); val SYNC_N = Bits(0,2); val SYNC_D = Bits(1,2); val SYNC_I = Bits(2,2); val PCR_STATUS = UFix( 0, 5); val PCR_EPC = UFix( 1, 5); val PCR_BADVADDR = UFix( 2, 5); val PCR_EVEC = UFix( 3, 5); val PCR_COUNT = UFix( 4, 5); val PCR_COMPARE = UFix( 5, 5); val PCR_CAUSE = UFix( 6, 5); val PCR_PTBR = UFix( 7, 5); val PCR_SEND_IPI = UFix( 8, 5); val PCR_CLR_IPI = UFix( 9, 5); val PCR_COREID = UFix(10, 5); val PCR_K0 = UFix(12, 5); val PCR_K1 = UFix(13, 5); val PCR_TOHOST = UFix(16, 5); val PCR_FROMHOST = UFix(17, 5); val PCR_VECBANK = UFix(18, 5); // temporaries for vector, these will go away val PCR_VEC_TMP1 = UFix(30, 5) val PCR_VEC_TMP2 = UFix(31, 5) // definition of bits in PCR status reg val SR_ET = 0; // enable traps val SR_EF = 1; // enable floating point val SR_EV = 2; // enable vector unit val SR_EC = 3; // enable compressed instruction encoding val SR_PS = 4; // mode stack bit val SR_S = 5; // user/supervisor mode val SR_UX = 6; // 64 bit user mode val SR_SX = 7; // 64 bit supervisor mode val SR_VM = 16; // VM enable val COREID = 0; val PADDR_BITS = 40; val VADDR_BITS = 43; val PGIDX_BITS = 13; val PPN_BITS = PADDR_BITS-PGIDX_BITS; val VPN_BITS = VADDR_BITS-PGIDX_BITS; val ASID_BITS = 7; val PERM_BITS = 6; // rocketNBDCache parameters val DCACHE_PORTS = 2 val CPU_DATA_BITS = 64; val CPU_TAG_BITS = 9; val DCACHE_TAG_BITS = log2up(DCACHE_PORTS) + CPU_TAG_BITS val OFFSET_BITS = 6; // log2(cache line size in bytes) val NMSHR = 2; // number of primary misses val NRPQ = 16; // number of secondary misses val NSDQ = 17; // number of secondary stores/AMOs val LG_REFILL_WIDTH = 4; // log2(cache bus width in bytes) val IDX_BITS = 7; val TAG_BITS = PADDR_BITS - OFFSET_BITS - IDX_BITS; val NWAYS = 1; require(IDX_BITS+OFFSET_BITS <= PGIDX_BITS); // coherence parameters val NTILES = 1 val COHERENCE_DATA_BITS = (1 << OFFSET_BITS)*8 val TILE_ID_BITS = 1 val TILE_XACT_ID_BITS = 1 // log2(NMSHR) val GLOBAL_XACT_ID_BITS = IDX_BITS // if one active xact per set val NGLOBAL_XACTS = 1 << IDX_BITS val TTYPE_BITS = 2 val X_READ_SHARED = UFix(0, TTYPE_BITS) val X_READ_EXCLUSIVE = UFix(1, TTYPE_BITS) val X_READ_UNCACHED = UFix(2, TTYPE_BITS) val X_WRITE_UNCACHED = UFix(3, TTYPE_BITS) val PTYPE_BITS = 2 val P_INVALIDATE = UFix(0, PTYPE_BITS) val P_DOWNGRADE = UFix(1, PTYPE_BITS) val P_COPY = UFix(2, PTYPE_BITS) // external memory interface val IMEM_TAG_BITS = 1; val DMEM_TAG_BITS = ceil(log(NMSHR)/log(2)).toInt; val MEM_TAG_BITS = 2 + max(IMEM_TAG_BITS, DMEM_TAG_BITS); val MEM_DATA_BITS = 128; val REFILL_CYCLES = (1 << OFFSET_BITS)*8/MEM_DATA_BITS; val DTLB_ENTRIES = 8; val ITLB_ENTRIES = 8; // physical memory size (# 8K pages) // if you change this value, make sure to also change MEMORY_SIZE variable in memif.h val MEMSIZE_PAGES = 0x8000; // 256 megs val MEMSIZE_BYTES = MEMSIZE_PAGES*8192; val START_ADDR = 0x2000; val HAVE_RVC = false val HAVE_FPU = true val HAVE_VEC = false val FPU_N = UFix(0, 1); val FPU_Y = if (HAVE_FPU) UFix(1, 1) else FPU_N; val VEC_N = UFix(0, 1); val VEC_Y = if (HAVE_VEC) UFix(1, 1) else VEC_N; val VEC_X = UFix(0, 1) val VEC_VL = UFix(0, 1) val VEC_CFG = UFix(1, 1) val VCMD_I = UFix(0, 3) val VCMD_F = UFix(1, 3) val VCMD_TX = UFix(2, 3) val VCMD_TF = UFix(3, 3) val VCMD_MX = UFix(4, 3) val VCMD_MF = UFix(5, 3) val VCMD_X = UFix(0, 3) val VIMM_VLEN = UFix(0, 1) val VIMM_ALU = UFix(1, 1) val VIMM_X = UFix(0, 1) val DTLB_VEC = 0 val DTLB_VPF = 1 val DTLB_CPU = 2 }