package Top { import Chisel._ import Node._; import Constants._ import Instructions._ class ioDpathAll extends Bundle() { val host = new ioHost(); val ctrl = new ioCtrlDpath().flip(); val debug = new ioDebug(); val dmem = new ioDmem(List("req_addr", "req_data", "req_tag", "resp_val", "resp_tag", "resp_data")).flip(); val imem = new ioImem(List("req_addr", "resp_data")).flip(); } class rocketDpath extends Component { val io = new ioDpathAll(); val btb = new rocketDpathBTB(); val if_btb_target = btb.io.target; val pcr = new rocketDpathPCR(); val ex_pcr = pcr.io.r.data; val alu = new rocketDpathALU(); val ex_alu_out = alu.io.out; val ex_jr_target = ex_alu_out(31,0); val div = new rocketDivider(64); val div_result = div.io.div_result_bits; val div_result_tag = div.io.div_result_tag; val div_result_val = div.io.div_result_val; val mul = new rocketMultiplier(); val mul_result = mul.io.result; val mul_result_tag = mul.io.result_tag; val mul_result_val = mul.io.result_val; val rfile = new rocketDpathRegfile(); // instruction fetch definitions val if_reg_pc = Reg(width = 32, resetVal = UFix(0, 32)); // instruction decode definitions val id_reg_pc = Reg(resetVal = UFix(0,32)); val id_reg_pc_plus4 = Reg(resetVal = UFix(0,32)); val id_reg_inst = Reg(resetVal = NOP); // execute definitions val ex_reg_pc = Reg(resetVal = UFix(0,32)); val ex_reg_pc_plus4 = Reg(resetVal = UFix(0,32)); val ex_reg_inst = Reg(resetVal = Bits(0,32)); val ex_reg_raddr2 = Reg(resetVal = UFix(0,5)); val ex_reg_raddr1 = Reg(resetVal = UFix(0,5)); val ex_reg_rs2 = Reg(resetVal = Bits(0,64)); val ex_reg_rs1 = Reg(resetVal = Bits(0,64)); val ex_reg_waddr = Reg(resetVal = UFix(0,5)); val ex_reg_ctrl_sel_alu2 = Reg(resetVal = A2_X); val ex_reg_ctrl_sel_alu1 = Reg(resetVal = A1_X); val ex_reg_ctrl_fn_dw = Reg(resetVal = DW_X); val ex_reg_ctrl_fn_alu = Reg(resetVal = FN_X); val ex_reg_ctrl_ll_wb = Reg(resetVal = Bool(false)); val ex_reg_ctrl_mul_val = Reg(resetVal = Bool(false)); val ex_reg_ctrl_mul_fn = Reg(resetVal = MUL_X); val ex_reg_ctrl_div_val = Reg(resetVal = Bool(false)); val ex_reg_ctrl_div_fn = Reg(resetVal = DIV_X); val ex_reg_ctrl_sel_wb = Reg(resetVal = WB_X); val ex_reg_ctrl_wen = Reg(resetVal = Bool(false)); val ex_reg_ctrl_ren_pcr = Reg(resetVal = Bool(false)); val ex_reg_ctrl_wen_pcr = Reg(resetVal = Bool(false)); val ex_reg_ctrl_eret = Reg(resetVal = Bool(false)); val ex_reg_ctrl_exception = Reg(resetVal = Bool(false)); val ex_reg_ctrl_cause = Reg(resetVal = UFix(0,5)); val ex_wdata = Wire() { Bits() }; // memory definitions val mem_reg_pc = Reg(resetVal = UFix(0,32)); val mem_reg_pc_plus4 = Reg(resetVal = UFix(0,32)); val mem_reg_waddr = Reg(resetVal = UFix(0,5)); val mem_reg_wdata = Reg(resetVal = Bits(0,64)); val mem_reg_raddr2 = Reg(resetVal = UFix(0,5)); val mem_reg_ctrl_ll_wb = Reg(resetVal = Bool(false)); val mem_reg_ctrl_div_val = Reg(resetVal = Bool(false)); val mem_reg_ctrl_mul_val = Reg(resetVal = Bool(false)); val mem_reg_ctrl_wen = Reg(resetVal = Bool(false)); val mem_reg_ctrl_wen_pcr = Reg(resetVal = Bool(false)); val mem_reg_ctrl_exception = Reg(resetVal = Bool(false)); // writeback definitions val wb_reg_pc = Reg(resetVal = UFix(0,32)); val wb_reg_pc_plus4 = Reg(resetVal = UFix(0,32)); val wb_reg_waddr = Reg(resetVal = UFix(0,5)); val wb_reg_wdata = Reg(resetVal = Bits(0,64)); val wb_reg_ctrl_ll_wb = Reg(resetVal = Bool(false)); val wb_reg_raddr2 = Reg(resetVal = UFix(0,5)); val wb_reg_ctrl_div_val = Reg(resetVal = Bool(false)); val wb_reg_ctrl_mul_val = Reg(resetVal = Bool(false)); val wb_reg_ctrl_wen = Reg(resetVal = Bool(false)); val wb_reg_ctrl_wen_pcr = Reg(resetVal = Bool(false)); val r_dmem_resp_val = Reg(resetVal = Bool(false)); val r_dmem_resp_waddr = Reg(resetVal = UFix(0,5)); val r_dmem_resp_pos = Reg(resetVal = UFix(0,3)); val r_dmem_resp_type = Reg(resetVal = UFix(0,3)); val r_dmem_resp_data = Reg(resetVal = Bits(0,64)); // instruction fetch stage val if_pc_plus4 = if_reg_pc + UFix(4, 32); val ex_sign_extend = Cat(Fill(52, ex_reg_inst(21)), ex_reg_inst(21,10)); val ex_sign_extend_split = Cat(Fill(52, ex_reg_inst(31)), ex_reg_inst(31,27), ex_reg_inst(16,10)); val branch_adder_rhs = Mux(io.ctrl.sel_pc === PC_BR, Cat(ex_sign_extend_split(30,0), UFix(0, 1)), Cat(Fill(6, ex_reg_inst(31)), ex_reg_inst(31,7), UFix(0, 1))); val ex_branch_target = ex_reg_pc + branch_adder_rhs.toUFix; btb.io.correct_target := ex_branch_target; val if_next_pc = Mux(io.ctrl.sel_pc === PC_4, if_pc_plus4, Mux(io.ctrl.sel_pc === PC_BTB, if_btb_target, Mux(io.ctrl.sel_pc === PC_EX4, ex_reg_pc_plus4, Mux(io.ctrl.sel_pc === PC_BR, ex_branch_target, Mux(io.ctrl.sel_pc === PC_J, ex_branch_target, Mux(io.ctrl.sel_pc === PC_JR, ex_jr_target.toUFix, Mux(io.ctrl.sel_pc === PC_PCR, ex_pcr(31,0).toUFix, Mux(io.ctrl.sel_pc === PC_MEM, mem_reg_pc_plus4, UFix(0, 32))))))))); when (!io.host.start){ if_reg_pc <== UFix(0, 32); //32'hFFFF_FFFC; } when (!io.ctrl.stallf) { if_reg_pc <== if_next_pc; } io.imem.req_addr := Mux(io.ctrl.stallf, if_reg_pc, if_next_pc); btb.io.current_pc4 := if_pc_plus4; btb.io.hit ^^ io.ctrl.btb_hit; btb.io.wen ^^ io.ctrl.wen_btb; btb.io.correct_pc4 := ex_reg_pc_plus4; // instruction decode stage when (!io.ctrl.stalld) { id_reg_pc <== if_reg_pc; id_reg_pc_plus4 <== if_pc_plus4; when(io.ctrl.killf) { id_reg_inst <== NOP; } otherwise { id_reg_inst <== io.imem.resp_data; } } val id_raddr1 = id_reg_inst(26,22).toUFix; val id_raddr2 = id_reg_inst(21,17).toUFix; // regfile read rfile.io.r0.en ^^ io.ctrl.ren2; rfile.io.r0.addr := id_raddr2; val id_rdata2 = rfile.io.r0.data; rfile.io.r1.en ^^ io.ctrl.ren1; rfile.io.r1.addr := id_raddr1; val id_rdata1 = rfile.io.r1.data; // destination register selection val id_waddr = Mux(io.ctrl.div_wb, div_result_tag, Mux(io.ctrl.mul_wb, mul_result_tag, Mux(io.ctrl.sel_wa === WA_RD, id_reg_inst(31,27).toUFix, Mux(io.ctrl.sel_wa === WA_RA, RA, UFix(0, 5))))); // bypass muxes val id_rs1 = Mux(io.ctrl.div_wb, div_result, Mux(io.ctrl.mul_wb, mul_result, Mux(id_raddr1 != UFix(0, 5) && ex_reg_ctrl_wen && id_raddr1 === ex_reg_waddr, ex_wdata, Mux(id_raddr1 != UFix(0, 5) && mem_reg_ctrl_wen && id_raddr1 === mem_reg_waddr, mem_reg_wdata, Mux(id_raddr1 != UFix(0, 5) && io.ctrl.mem_load && id_raddr1 === mem_reg_waddr, io.dmem.resp_data, Mux(id_raddr1 != UFix(0, 5) && r_dmem_resp_val && id_raddr1 === r_dmem_resp_waddr, r_dmem_resp_data, Mux(id_raddr1 != UFix(0, 5) && wb_reg_ctrl_wen && id_raddr1 === wb_reg_waddr, wb_reg_wdata, id_rdata1))))))); val id_rs2 = Mux(id_raddr2 != UFix(0, 5) && ex_reg_ctrl_wen && id_raddr2 === ex_reg_waddr, ex_wdata, Mux(id_raddr2 != UFix(0, 5) && mem_reg_ctrl_wen && id_raddr2 === mem_reg_waddr, mem_reg_wdata, Mux(id_raddr2 != UFix(0, 5) && io.ctrl.mem_load && id_raddr2 === mem_reg_waddr, io.dmem.resp_data, Mux(id_raddr2 != UFix(0, 5) && r_dmem_resp_val && id_raddr2 === r_dmem_resp_waddr, r_dmem_resp_data, Mux(id_raddr2 != UFix(0, 5) && wb_reg_ctrl_wen && id_raddr2 === wb_reg_waddr, wb_reg_wdata, id_rdata2))))); // write value to cause register based on exception type val id_exception = io.ctrl.xcpt_illegal || io.ctrl.xcpt_privileged || io.ctrl.xcpt_fpu || io.ctrl.xcpt_syscall; val id_cause = Mux(io.ctrl.xcpt_illegal, UFix(2,5), Mux(io.ctrl.xcpt_privileged, UFix(3,5), Mux(io.ctrl.xcpt_fpu, UFix(4,5), Mux(io.ctrl.xcpt_syscall, UFix(6,5), UFix(0,5))))); io.ctrl.inst := id_reg_inst; // io.ctrl.rs1 := id_rs1; // io.ctrl.rs2 := id_rs2; // execute stage ex_reg_pc <== id_reg_pc; ex_reg_pc_plus4 <== id_reg_pc_plus4; ex_reg_inst <== id_reg_inst; ex_reg_raddr2 <== id_raddr2; ex_reg_raddr1 <== id_raddr1; ex_reg_rs2 <== id_rs2; ex_reg_rs1 <== id_rs1; ex_reg_waddr <== id_waddr; ex_reg_ctrl_sel_alu2 <== io.ctrl.sel_alu2; ex_reg_ctrl_sel_alu1 <== io.ctrl.sel_alu1.toUFix; ex_reg_ctrl_fn_dw <== io.ctrl.fn_dw.toUFix; ex_reg_ctrl_fn_alu <== io.ctrl.fn_alu; ex_reg_ctrl_mul_fn <== io.ctrl.mul_fn; ex_reg_ctrl_div_fn <== io.ctrl.div_fn; ex_reg_ctrl_ll_wb <== io.ctrl.div_wb | io.ctrl.mul_wb; // TODO: verify ex_reg_ctrl_sel_wb <== io.ctrl.sel_wb; ex_reg_ctrl_ren_pcr <== io.ctrl.ren_pcr; ex_reg_ctrl_cause <== id_cause; when(io.ctrl.killd) { ex_reg_ctrl_div_val <== Bool(false); ex_reg_ctrl_mul_val <== Bool(false); ex_reg_ctrl_wen <== Bool(false); ex_reg_ctrl_wen_pcr <== Bool(false); ex_reg_ctrl_eret <== Bool(false); ex_reg_ctrl_exception <== Bool(false); } otherwise { ex_reg_ctrl_div_val <== io.ctrl.div_val; ex_reg_ctrl_mul_val <== io.ctrl.mul_val; ex_reg_ctrl_wen <== io.ctrl.wen; ex_reg_ctrl_wen_pcr <== io.ctrl.wen_pcr; ex_reg_ctrl_eret <== io.ctrl.eret; ex_reg_ctrl_exception <== id_exception; } val ex_alu_in2 = Mux(ex_reg_ctrl_sel_alu2 === A2_0, UFix(0, 64), Mux(ex_reg_ctrl_sel_alu2 === A2_SEXT, ex_sign_extend, Mux(ex_reg_ctrl_sel_alu2 === A2_SPLIT, ex_sign_extend_split, Mux(ex_reg_ctrl_sel_alu2 === A2_RS2, ex_reg_rs2, UFix(0, 64))))); val ex_alu_in1 = Mux(ex_reg_ctrl_sel_alu1 === A1_RS1, ex_reg_rs1, Mux(ex_reg_ctrl_sel_alu1 === A1_LUI, Cat(Fill(32, ex_reg_inst(26)),ex_reg_inst(26,7),UFix(0, 12)), UFix(0, 64))); val ex_alu_shamt = Cat(ex_alu_in2(5) & ex_reg_ctrl_fn_dw === DW_64, ex_alu_in2(4,0)).toUFix; alu.io.dw := ex_reg_ctrl_fn_dw; alu.io.fn := ex_reg_ctrl_fn_alu; alu.io.shamt := ex_alu_shamt.toUFix; alu.io.in2 := ex_alu_in2.toUFix; alu.io.in1 := ex_alu_in1.toUFix; // divider div.io.div_fn := ex_reg_ctrl_div_fn; div.io.div_val := ex_reg_ctrl_div_val; div.io.div_waddr := ex_reg_waddr; div.io.dpath_rs1 := ex_reg_rs1; div.io.dpath_rs2 := ex_reg_rs2; div.io.div_result_rdy := io.ctrl.div_wb; io.ctrl.div_rdy := div.io.div_rdy; io.ctrl.div_result_val := div.io.div_result_val; // multiplier mul.io.mul_val := ex_reg_ctrl_mul_val; mul.io.mul_fn := ex_reg_ctrl_mul_fn; mul.io.mul_tag := ex_reg_waddr; mul.io.in0 := ex_reg_rs1; mul.io.in1 := ex_reg_rs2; io.ctrl.mul_result_val := mul.io.result_val; io.ctrl.ex_waddr := ex_reg_waddr; // for load/use hazard detection // D$ request interface (registered inside D$ module) // other signals (req_val, req_rdy) connect to control module io.dmem.req_addr := ex_alu_out; io.dmem.req_data := ex_reg_rs2; io.dmem.req_tag := ex_reg_waddr; // processor control regfile read pcr.io.r.en := ex_reg_ctrl_ren_pcr | ex_reg_ctrl_exception | ex_reg_ctrl_eret; pcr.io.r.addr := Mux(ex_reg_ctrl_exception, PCR_EVEC, Mux(ex_reg_ctrl_eret, PCR_EPC, ex_reg_raddr2)); pcr.io.host.from_wen ^^ io.host.from_wen; pcr.io.host.from ^^ io.host.from; pcr.io.host.to ^^ io.host.to; pcr.io.eret := ex_reg_ctrl_eret; pcr.io.exception := ex_reg_ctrl_exception; pcr.io.cause := ex_reg_ctrl_cause; pcr.io.pc := ex_reg_pc; io.ctrl.status := pcr.io.status; io.debug.error_mode := pcr.io.debug.error_mode; io.debug.log_control := pcr.io.debug.log_control; // branch resolution logic io.ctrl.br_eq := (ex_reg_rs1 === ex_reg_rs2); io.ctrl.br_ltu := (ex_reg_rs1.toUFix < ex_reg_rs2.toUFix); io.ctrl.br_lt := (~(ex_reg_rs1(63) ^ ex_reg_rs2(63)) & io.ctrl.br_ltu | ex_reg_rs1(63) & ~ex_reg_rs2(63)).toBool; // writeback select mux ex_wdata := Mux(ex_reg_ctrl_ll_wb || ex_reg_ctrl_wen_pcr, ex_reg_rs1, Mux(ex_reg_ctrl_sel_wb === WB_PC, ex_reg_pc_plus4, Mux(ex_reg_ctrl_sel_wb === WB_ALU, ex_alu_out, Mux(ex_reg_ctrl_sel_wb === WB_PCR, ex_pcr, Bits(0, 64))))).toBits; // memory stage mem_reg_pc <== ex_reg_pc; mem_reg_pc_plus4 <== ex_reg_pc_plus4; mem_reg_waddr <== ex_reg_waddr; mem_reg_wdata <== ex_wdata; mem_reg_ctrl_ll_wb <== ex_reg_ctrl_ll_wb; mem_reg_raddr2 <== ex_reg_raddr2; when (io.ctrl.killx) { mem_reg_ctrl_div_val <== Bool(false); mem_reg_ctrl_mul_val <== Bool(false); mem_reg_ctrl_wen <== Bool(false); mem_reg_ctrl_wen_pcr <== Bool(false); mem_reg_ctrl_exception <== Bool(false); } otherwise { mem_reg_ctrl_div_val <== ex_reg_ctrl_div_val; mem_reg_ctrl_mul_val <== ex_reg_ctrl_mul_val; mem_reg_ctrl_wen <== ex_reg_ctrl_wen; mem_reg_ctrl_wen_pcr <== ex_reg_ctrl_wen_pcr; mem_reg_ctrl_exception <== ex_reg_ctrl_exception; } // exception signal to control (for NPC select) io.ctrl.exception := mem_reg_ctrl_exception; // writeback stage r_dmem_resp_val <== io.dmem.resp_val; r_dmem_resp_waddr <== io.dmem.resp_tag(4,0).toUFix; r_dmem_resp_pos <== io.dmem.resp_tag(7,5).toUFix; r_dmem_resp_type <== io.dmem.resp_tag(10,8).toUFix; r_dmem_resp_data <== io.dmem.resp_data; wb_reg_pc <== mem_reg_pc; wb_reg_pc_plus4 <== mem_reg_pc_plus4; wb_reg_waddr <== mem_reg_waddr; wb_reg_wdata <== mem_reg_wdata; wb_reg_ctrl_ll_wb <== mem_reg_ctrl_ll_wb; wb_reg_raddr2 <== mem_reg_raddr2; when (io.ctrl.killm) { wb_reg_ctrl_div_val <== Bool(false); wb_reg_ctrl_mul_val <== Bool(false); wb_reg_ctrl_wen <== Bool(false); wb_reg_ctrl_wen_pcr <== Bool(false); } otherwise { wb_reg_ctrl_div_val <== mem_reg_ctrl_div_val; wb_reg_ctrl_mul_val <== mem_reg_ctrl_mul_val; wb_reg_ctrl_wen <== mem_reg_ctrl_wen; wb_reg_ctrl_wen_pcr <== mem_reg_ctrl_wen_pcr; } // crossbar/sign extension for 8/16/32 bit loads val dmem_resp_data_w = Mux(r_dmem_resp_pos(2).toBool, r_dmem_resp_data(63, 32), r_dmem_resp_data(31, 0)); val dmem_resp_data_h = Mux(r_dmem_resp_pos(1).toBool, dmem_resp_data_w(31, 16), dmem_resp_data_w(15, 0)); val dmem_resp_data_b = Mux(r_dmem_resp_pos(0).toBool, dmem_resp_data_h(15, 8), dmem_resp_data_h(7, 0)); val dmem_resp_data_final = Mux(r_dmem_resp_type === MT_B, Cat(Fill(56, dmem_resp_data_b(7)), dmem_resp_data_b), Mux(r_dmem_resp_type === MT_BU, Cat(UFix(0, 56), dmem_resp_data_b), Mux(r_dmem_resp_type === MT_H, Cat(Fill(48, dmem_resp_data_h(15)), dmem_resp_data_h), Mux(r_dmem_resp_type === MT_HU, Cat(UFix(0, 48), dmem_resp_data_h), Mux(r_dmem_resp_type === MT_W, Cat(Fill(32, dmem_resp_data_w(31)), dmem_resp_data_w), Mux(r_dmem_resp_type === MT_WU, Cat(UFix(0, 32), dmem_resp_data_w), Mux(r_dmem_resp_type === MT_D, r_dmem_resp_data, UFix(0, 64)))))))); // regfile write rfile.io.w0.addr := wb_reg_waddr; rfile.io.w0.en := wb_reg_ctrl_wen | wb_reg_ctrl_ll_wb; rfile.io.w0.data := wb_reg_wdata; rfile.io.w1.addr := r_dmem_resp_waddr; rfile.io.w1.en := r_dmem_resp_val; rfile.io.w1.data := dmem_resp_data_final; // scoreboard set (for D$ misses, div, mul) io.ctrl.sboard_set := wb_reg_ctrl_div_val | wb_reg_ctrl_mul_val | io.ctrl.dcache_miss; io.ctrl.sboard_seta := wb_reg_waddr; // scoreboard clear (for div/mul and D$ load miss writebacks) io.ctrl.sboard_clr0 := wb_reg_ctrl_ll_wb; io.ctrl.sboard_clr0a := wb_reg_waddr; io.ctrl.sboard_clr1 := r_dmem_resp_val; io.ctrl.sboard_clr1a := r_dmem_resp_waddr; // processor control regfile write pcr.io.w.addr := wb_reg_raddr2; pcr.io.w.en := wb_reg_ctrl_wen_pcr; pcr.io.w.data := wb_reg_wdata; } }