1
0

replace emulator with verilator for chisel3

This commit is contained in:
Donggyu Kim
2016-06-08 01:39:40 -07:00
parent 08e53a00f0
commit 99b257316e
6 changed files with 419 additions and 85 deletions

View File

@ -1,9 +1,17 @@
// See LICENSE for license details.
#include "htif_emulator.h"
#ifndef VERILATOR
#include "emulator.h"
#else
#include "verilated.h"
#if VM_TRACE
#include "verilated_vcd_c.h"
#endif
#endif
#include "mm.h"
#include "mm_dramsim2.h"
#include <iostream>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
@ -14,6 +22,8 @@
#define MEM_LEN_BITS 8
#define MEM_RESP_BITS 2
#include "emulator_type.h"
htif_emulator_t* htif;
void handle_sigterm(int sig)
{
@ -60,6 +70,8 @@ int main(int argc, char** argv)
}
const int disasm_len = 24;
#ifndef VERILATOR
if (vcd)
{
// Create a VCD file
@ -71,11 +83,24 @@ int main(int argc, char** argv)
fprintf(vcdfile, "$upscope $end\n");
}
// The chisel generated code
Top_t tile;
srand(random_seed);
tile.init(random_seed);
#else
VTop tile;
#if VM_TRACE
VerilatedVcdC *tfp = NULL;
if (vcd) {
tfp = new VerilatedVcdC;
Verilated::traceEverOn(true); // Verilator must compute traced signals
VL_PRINTF("Enabling waves... (%s)\n", vcd);
tile.trace(tfp, 99); // Trace 99 levels of hierarchy
tfp->open(vcd); // Open the dump file
}
#endif
#endif
srand(random_seed);
uint64_t mem_width = MEM_DATA_BITS / 8;
@ -102,12 +127,12 @@ int main(int argc, char** argv)
// Instantiate HTIF
htif = new htif_emulator_t(std::vector<std::string>(argv + 1, argv + argc));
int htif_bits = tile.Top__io_host_in_bits.width();
assert(htif_bits % 8 == 0 && htif_bits <= val_n_bits());
assert(HTIF_WIDTH % 8 == 0 && HTIF_WIDTH <= 8*sizeof(uint64_t));
signal(SIGTERM, handle_sigterm);
// reset for one host_clk cycle to handle pipelined reset
#ifndef VERILATOR
tile.Top__io_host_in_valid = LIT<1>(0);
tile.Top__io_host_out_ready = LIT<1>(0);
for (int i = 0; i < 3; i += tile.Top__io_host_clk_edge.to_bool())
@ -115,44 +140,58 @@ int main(int argc, char** argv)
tile.clock_lo(LIT<1>(1));
tile.clock_hi(LIT<1>(1));
}
#else
tile.io_host_in_valid = 0;
tile.io_host_out_ready = 0;
for (int i = 0; i < 3; i += tile.io_host_clk_edge)
{
tile.reset = 1;
tile.clk = 0;
tile.eval();
tile.clk = 1;
tile.eval();
}
tile.reset = 0;
#endif
dat_t<1> *mem_ar_valid[N_MEM_CHANNELS];
dat_t<1> *mem_ar_ready[N_MEM_CHANNELS];
dat_t<MEM_ADDR_BITS> *mem_ar_bits_addr[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_ar_bits_id[N_MEM_CHANNELS];
dat_t<MEM_SIZE_BITS> *mem_ar_bits_size[N_MEM_CHANNELS];
dat_t<MEM_LEN_BITS> *mem_ar_bits_len[N_MEM_CHANNELS];
bool_t *mem_ar_valid[N_MEM_CHANNELS];
bool_t *mem_ar_ready[N_MEM_CHANNELS];
mem_addr_t *mem_ar_bits_addr[N_MEM_CHANNELS];
mem_id_t *mem_ar_bits_id[N_MEM_CHANNELS];
mem_size_t *mem_ar_bits_size[N_MEM_CHANNELS];
mem_len_t *mem_ar_bits_len[N_MEM_CHANNELS];
dat_t<1> *mem_aw_valid[N_MEM_CHANNELS];
dat_t<1> *mem_aw_ready[N_MEM_CHANNELS];
dat_t<MEM_ADDR_BITS> *mem_aw_bits_addr[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_aw_bits_id[N_MEM_CHANNELS];
dat_t<MEM_SIZE_BITS> *mem_aw_bits_size[N_MEM_CHANNELS];
dat_t<MEM_LEN_BITS> *mem_aw_bits_len[N_MEM_CHANNELS];
bool_t *mem_aw_valid[N_MEM_CHANNELS];
bool_t *mem_aw_ready[N_MEM_CHANNELS];
mem_addr_t *mem_aw_bits_addr[N_MEM_CHANNELS];
mem_id_t *mem_aw_bits_id[N_MEM_CHANNELS];
mem_size_t *mem_aw_bits_size[N_MEM_CHANNELS];
mem_len_t *mem_aw_bits_len[N_MEM_CHANNELS];
dat_t<1> *mem_w_valid[N_MEM_CHANNELS];
dat_t<1> *mem_w_ready[N_MEM_CHANNELS];
dat_t<MEM_DATA_BITS> *mem_w_bits_data[N_MEM_CHANNELS];
dat_t<MEM_STRB_BITS> *mem_w_bits_strb[N_MEM_CHANNELS];
dat_t<1> *mem_w_bits_last[N_MEM_CHANNELS];
bool_t *mem_w_valid[N_MEM_CHANNELS];
bool_t *mem_w_ready[N_MEM_CHANNELS];
mem_data_t *mem_w_bits_data[N_MEM_CHANNELS];
mem_strb_t *mem_w_bits_strb[N_MEM_CHANNELS];
bool_t *mem_w_bits_last[N_MEM_CHANNELS];
dat_t<1> *mem_b_valid[N_MEM_CHANNELS];
dat_t<1> *mem_b_ready[N_MEM_CHANNELS];
dat_t<MEM_RESP_BITS> *mem_b_bits_resp[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_b_bits_id[N_MEM_CHANNELS];
bool_t *mem_b_valid[N_MEM_CHANNELS];
bool_t *mem_b_ready[N_MEM_CHANNELS];
mem_resp_t *mem_b_bits_resp[N_MEM_CHANNELS];
mem_id_t *mem_b_bits_id[N_MEM_CHANNELS];
dat_t<1> *mem_r_valid[N_MEM_CHANNELS];
dat_t<1> *mem_r_ready[N_MEM_CHANNELS];
dat_t<MEM_RESP_BITS> *mem_r_bits_resp[N_MEM_CHANNELS];
dat_t<MEM_ID_BITS> *mem_r_bits_id[N_MEM_CHANNELS];
dat_t<MEM_DATA_BITS> *mem_r_bits_data[N_MEM_CHANNELS];
dat_t<1> *mem_r_bits_last[N_MEM_CHANNELS];
bool_t *mem_r_valid[N_MEM_CHANNELS];
bool_t *mem_r_ready[N_MEM_CHANNELS];
mem_resp_t *mem_r_bits_resp[N_MEM_CHANNELS];
mem_id_t *mem_r_bits_id[N_MEM_CHANNELS];
mem_data_t *mem_r_bits_data[N_MEM_CHANNELS];
bool_t *mem_r_bits_last[N_MEM_CHANNELS];
#include TBFRAG
while (!htif->done() && trace_count < max_cycles && ret == 0)
while (!htif->done() && (trace_count >> 1) < max_cycles && ret == 0)
{
for (int i = 0; i < N_MEM_CHANNELS; i++) {
#ifndef VERILATOR
*mem_ar_ready[i] = LIT<1>(mm[i]->ar_ready());
*mem_aw_ready[i] = LIT<1>(mm[i]->aw_ready());
*mem_w_ready[i] = LIT<1>(mm[i]->w_ready());
@ -167,18 +206,46 @@ int main(int argc, char** argv)
*mem_r_bits_last[i] = LIT<1>(mm[i]->r_last());
memcpy(mem_r_bits_data[i]->values, mm[i]->r_data(), mem_width);
#else
*mem_ar_ready[i] = mm[i]->ar_ready();
*mem_aw_ready[i] = mm[i]->aw_ready();
*mem_w_ready[i] = mm[i]->w_ready();
*mem_b_valid[i] = mm[i]->b_valid();
*mem_b_bits_resp[i] = mm[i]->b_resp();
*mem_b_bits_id[i] = mm[i]->b_id();
*mem_r_valid[i] = mm[i]->r_valid();
*mem_r_bits_resp[i] = mm[i]->r_resp();
*mem_r_bits_id[i] = mm[i]->r_id();
*mem_r_bits_last[i] = mm[i]->r_last();
memcpy(mem_r_bits_data[i], mm[i]->r_data(), mem_width);
#endif
}
try {
#ifndef VERILATOR
tile.clock_lo(LIT<1>(0));
#else
tile.clk = 0;
tile.eval();
// make sure we dump on cycle 0 to get dump_init
#if VM_TRACE
if (tfp && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tfp->dump(trace_count);
#endif
#endif
trace_count++;
} catch (std::runtime_error& e) {
max_cycles = trace_count; // terminate cleanly after this cycle
max_cycles = trace_count >> 1; // terminate cleanly after this cycle
ret = 1;
std::cerr << e.what() << std::endl;
}
for (int i = 0; i < N_MEM_CHANNELS; i++) {
mm[i]->tick(
#ifndef VERILATOR
mem_ar_valid[i]->to_bool(),
mem_ar_bits_addr[i]->lo_word() - MEM_BASE,
mem_ar_bits_id[i]->lo_word(),
@ -198,50 +265,100 @@ int main(int argc, char** argv)
mem_r_ready[i]->to_bool(),
mem_b_ready[i]->to_bool()
#else
*mem_ar_valid[i],
*mem_ar_bits_addr[i] - MEM_BASE,
*mem_ar_bits_id[i],
*mem_ar_bits_size[i],
*mem_ar_bits_len[i],
*mem_aw_valid[i],
*mem_aw_bits_addr[i] - MEM_BASE,
*mem_aw_bits_id[i],
*mem_aw_bits_size[i],
*mem_aw_bits_len[i],
*mem_w_valid[i],
*mem_w_bits_strb[i],
mem_w_bits_data[i],
*mem_w_bits_last[i],
*mem_r_ready[i],
*mem_b_ready[i]
#endif
);
}
#ifndef VERILATOR
if (tile.Top__io_host_clk_edge.to_bool())
{
static bool htif_in_valid = false;
static val_t htif_in_bits;
if (tile.Top__io_host_in_ready.to_bool() || !htif_in_valid)
htif_in_valid = htif->recv_nonblocking(&htif_in_bits, htif_bits/8);
htif_in_valid = htif->recv_nonblocking(&htif_in_bits, HTIF_WIDTH/8);
tile.Top__io_host_in_valid = LIT<1>(htif_in_valid);
tile.Top__io_host_in_bits = LIT<64>(htif_in_bits);
if (tile.Top__io_host_out_valid.to_bool())
htif->send(tile.Top__io_host_out_bits.values, htif_bits/8);
htif->send(tile.Top__io_host_out_bits.values, HTIF_WIDTH/8);
tile.Top__io_host_out_ready = LIT<1>(1);
}
if (log && trace_count >= start)
if (log && (trace_count >> 1) >= start)
tile.print(stderr);
// make sure we dump on cycle 0 to get dump_init
if (vcd && (trace_count == 0 || trace_count >= start))
tile.dump(vcdfile, trace_count);
if (vcd && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tile.dump(vcdfile, trace_count >> 1);
tile.clock_hi(LIT<1>(0));
#else
if (tile.io_host_clk_edge)
{
static bool htif_in_valid = false;
static uint64_t htif_in_bits;
if (tile.io_host_in_ready || !htif_in_valid)
htif_in_valid = htif->recv_nonblocking(&htif_in_bits, HTIF_WIDTH/8);
tile.io_host_in_valid = htif_in_valid;
tile.io_host_in_bits = htif_in_bits;
if (tile.io_host_out_valid)
htif->send(&tile.io_host_out_bits, HTIF_WIDTH/8);
tile.io_host_out_ready = 1;
}
tile.clk = 1;
tile.eval();
#if VM_TRACE
if (tfp && ((trace_count >> 1) == 0 || (trace_count >> 1) >= start))
tfp->dump(trace_count);
#endif
#endif
trace_count++;
}
if (vcd)
fclose(vcdfile);
#ifndef VERILATOR
if (vcd) fclose(vcdfile);
#else
#if VM_TRACE
if (tfp) tfp->close();
delete tfp;
#endif
#endif
if (htif->exit_code())
{
fprintf(stderr, "*** FAILED *** (code = %d, seed %d) after %ld cycles\n", htif->exit_code(), random_seed, trace_count);
fprintf(stderr, "*** FAILED *** (code = %d, seed %d) after %ld cycles\n", htif->exit_code(), random_seed, trace_count >> 1);
ret = htif->exit_code();
}
else if (trace_count == max_cycles)
else if ((trace_count >> 1) == max_cycles)
{
fprintf(stderr, "*** FAILED *** (timeout, seed %d) after %ld cycles\n", random_seed, trace_count);
fprintf(stderr, "*** FAILED *** (timeout, seed %d) after %ld cycles\n", random_seed, trace_count >> 1);
ret = 2;
}
else if (log || print_cycles)
{
fprintf(stderr, "Completed after %ld cycles\n", trace_count);
fprintf(stderr, "Completed after %ld cycles\n", trace_count >> 1);
}
delete htif;

105
csrc/emulator_type.h Normal file
View File

@ -0,0 +1,105 @@
// See LICENSE for license details.
#ifndef VERILATOR
#define bool_t dat_t<1>
#else
#define bool_t CData
#endif
#ifndef VERILATOR
#define mem_addr_t dat_t<MEM_ADDR_BITS>
#elif MEM_ADDR_BITS <= 8
#define mem_addr_t CData
#elif MEM_ADDR_BITS <= 16
#define mem_addr_t SData
#elif MEM_ADDR_BITS <= 32
#define mem_addr_t IData
#elif MEM_ADDR_BITS <= 64
#define mem_addr_t QData
#else // MEM_ADDR_BITS > 64
#define mem_addr_t WData*
#endif
#ifndef VERILATOR
#define mem_id_t dat_t<MEM_ID_BITS>
#elif MEM_ID_BITS <= 8
#define mem_id_t CData
#elif MEM_ID_BITS <= 16
#define mem_id_t SData
#elif MEM_ID_BITS <= 32
#define mem_id_t IData
#elif MEM_ID_BITS <= 64
#define mem_id_t QData
#else // MEM_ID_BITS > 64
#define mem_id_t WData*
#endif
#ifndef VERILATOR
#define mem_size_t dat_t<MEM_SIZE_BITS>
#elif MEM_SIZE_BITS <= 8
#define mem_size_t CData
#elif MEM_SIZE_BITS <= 16
#define mem_size_t SData
#elif MEM_SIZE_BITS <= 32
#define mem_size_t IData
#elif MEM_SIZE_BITS <= 64
#define mem_size_t QData
#else // MEM_SIZE_BITS > 64
#define mem_size_t WData*
#endif
#ifndef VERILATOR
#define mem_len_t dat_t<MEM_LEN_BITS>
#elif MEM_LEN_BITS <= 8
#define mem_len_t CData
#elif MEM_LEN_BITS <= 16
#define mem_len_t SData
#elif MEM_LEN_BITS <= 32
#define mem_len_t IData
#elif MEM_LEN_BITS <= 64
#define mem_len_t QData
#else // MEM_LEN_BITS > 64
#define mem_len_t WData*
#endif
#ifndef VERILATOR
#define mem_strb_t dat_t<MEM_STRB_BITS>
#elif MEM_STRB_BITS <= 8
#define mem_strb_t CData
#elif MEM_STRB_BITS <= 16
#define mem_strb_t SData
#elif MEM_STRB_BITS <= 32
#define mem_strb_t IData
#elif MEM_STRB_BITS <= 64
#define mem_strb_t QData
#else // MEM_STRB_BITS > 64
#define mem_strb_t WData*
#endif
#ifndef VERILATOR
#define mem_data_t dat_t<MEM_DATA_BITS>
#elif MEM_DATA_BITS <= 8
#define mem_data_t CData
#elif MEM_DATA_BITS <= 16
#define mem_data_t SData
#elif MEM_DATA_BITS <= 32
#define mem_data_t IData
#elif MEM_DATA_BITS <= 64
#define mem_data_t QData
#else // MEM_DATA_BITS > 64
#define mem_data_t WData*
#endif
#ifndef VERILATOR
#define mem_resp_t dat_t<MEM_RESP_BITS>
#elif MEM_RESP_BITS <= 8
#define mem_resp_t CData
#elif MEM_RESP_BITS <= 16
#define mem_resp_t SData
#elif MEM_RESP_BITS <= 32
#define mem_resp_t IData
#elif MEM_RESP_BITS <= 64
#define mem_resp_t QData
#else // MEM_RESP_BITS > 64
#define mem_resp_t WData*
#endif