1
0

Move a bunch more things into util package

A lot of utility code was just being imported willy-nilly from one
package to another. This moves the common code into util to make things
more sensible. The code moved were

 * The AsyncQueue and AsyncDecoupledCrossing from junctions.
 * All of the code in rocket's util.scala
 * The BlackBox asynchronous reset registers from uncore.tilelink2
 * The implicit definitions from uncore.util
This commit is contained in:
Howard Mao
2016-09-27 21:27:07 -07:00
parent 0924f8adb0
commit 9910c69c67
53 changed files with 242 additions and 268 deletions

View File

@ -0,0 +1,100 @@
// See LICENSE for license details.
package util
import Chisel._
object GrayCounter {
def apply(bits: Int, increment: Bool = Bool(true)): UInt = {
val incremented = Wire(UInt(width=bits))
val binary = AsyncResetReg(incremented, 0)
incremented := binary + increment.asUInt()
incremented ^ (incremented >> UInt(1))
}
}
object AsyncGrayCounter {
def apply(in: UInt, sync: Int): UInt = {
val syncv = List.fill(sync)(Module (new AsyncResetRegVec(w = in.getWidth, 0)))
syncv.last.io.d := in
syncv.last.io.en := Bool(true)
(syncv.init zip syncv.tail).foreach { case (sink, source) =>
sink.io.d := source.io.q
sink.io.en := Bool(true)
}
syncv(0).io.d
}
}
class AsyncQueueSource[T <: Data](gen: T, depth: Int, sync: Int, clockIn: Clock, resetIn: Bool)
extends Module(_clock = clockIn, _reset = resetIn) {
val bits = log2Ceil(depth)
val io = new Bundle {
// These come from the source domain
val enq = Decoupled(gen).flip()
// These cross to the sink clock domain
val ridx = UInt(INPUT, width = bits+1)
val widx = UInt(OUTPUT, width = bits+1)
val mem = Vec(depth, gen).asOutput
}
val mem = Reg(Vec(depth, gen)) //This does NOT need to be asynchronously reset.
val widx = GrayCounter(bits+1, io.enq.fire())
val ridx = AsyncGrayCounter(io.ridx, sync)
val ready = widx =/= (ridx ^ UInt(depth | depth >> 1))
val index = if (depth == 1) UInt(0) else io.widx(bits-1, 0) ^ (io.widx(bits, bits) << (bits-1))
when (io.enq.fire() && !reset) { mem(index) := io.enq.bits }
val ready_reg = AsyncResetReg(ready, 0)
io.enq.ready := ready_reg
val widx_reg = AsyncResetReg(widx, 0)
io.widx := widx_reg
io.mem := mem
}
class AsyncQueueSink[T <: Data](gen: T, depth: Int, sync: Int, clockIn: Clock, resetIn: Bool)
extends Module(_clock = clockIn, _reset = resetIn) {
val bits = log2Ceil(depth)
val io = new Bundle {
// These come from the sink domain
val deq = Decoupled(gen)
// These cross to the source clock domain
val ridx = UInt(OUTPUT, width = bits+1)
val widx = UInt(INPUT, width = bits+1)
val mem = Vec(depth, gen).asInput
}
val ridx = GrayCounter(bits+1, io.deq.fire())
val widx = AsyncGrayCounter(io.widx, sync)
val valid = ridx =/= widx
// The mux is safe because timing analysis ensures ridx has reached the register
// On an ASIC, changes to the unread location cannot affect the selected value
// On an FPGA, only one input changes at a time => mem updates don't cause glitches
// The register only latches when the selected valued is not being written
val index = if (depth == 1) UInt(0) else ridx(bits-1, 0) ^ (ridx(bits, bits) << (bits-1))
// This register does not NEED to be reset, as its contents will not
// be considered unless the asynchronously reset deq valid register is set.
io.deq.bits := RegEnable(io.mem(index), valid)
io.deq.valid := AsyncResetReg(valid, 0)
io.ridx := AsyncResetReg(ridx, 0)
}
class AsyncQueue[T <: Data](gen: T, depth: Int = 8, sync: Int = 3) extends Crossing[T] {
require (sync >= 2)
require (depth > 0 && isPow2(depth))
val io = new CrossingIO(gen)
val source = Module(new AsyncQueueSource(gen, depth, sync, io.enq_clock, io.enq_reset))
val sink = Module(new AsyncQueueSink (gen, depth, sync, io.deq_clock, io.deq_reset))
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.mem := source.io.mem
sink.io.widx := source.io.widx
source.io.ridx := sink.io.ridx
}

View File

@ -0,0 +1,110 @@
package util
import Chisel._
import cde.{Parameters}
/** This black-boxes an Async Reset
* (or Set)
* Register.
*
* Because Chisel doesn't support
* parameterized black boxes,
* we unfortunately have to
* instantiate a number of these.
*
* We also have to hard-code the set/
* reset behavior.
*
* Do not confuse an asynchronous
* reset signal with an asynchronously
* reset reg. You should still
* properly synchronize your reset
* deassertion.
*
* @param d Data input
* @param q Data Output
* @param clk Clock Input
* @param rst Reset Input
* @param en Write Enable Input
*
*/
abstract class AbstractBBReg extends BlackBox {
val io = new Bundle {
val d = Bool(INPUT)
val q = Bool(OUTPUT)
val en = Bool(INPUT)
val clk = Clock(INPUT)
val rst = Bool(INPUT)
}
}
class AsyncResetReg extends AbstractBBReg
class AsyncSetReg extends AbstractBBReg
class SimpleRegIO(val w: Int) extends Bundle{
val d = UInt(INPUT, width = w)
val q = UInt(OUTPUT, width = w)
val en = Bool(INPUT)
}
class AsyncResetRegVec(val w: Int, val init: BigInt) extends Module {
val io = new SimpleRegIO(w)
val bb_d = Mux(io.en, io.d, io.q)
val async_regs: List[AbstractBBReg] = List.tabulate(w)(
i => Module (
if (((init >> i) % 2) > 0)
new AsyncSetReg
else
new AsyncResetReg)
)
io.q := async_regs.map(_.io.q).asUInt
for ((reg, idx) <- async_regs.zipWithIndex) {
reg.io.clk := clock
reg.io.rst := reset
reg.io.d := bb_d(idx)
reg.io.en := io.en
}
}
object AsyncResetReg {
def apply(d: Bool, clk: Clock, rst: Bool, init: Boolean): Bool = {
val reg: AbstractBBReg =
if (init) Module (new AsyncSetReg)
else Module(new AsyncResetReg)
reg.io.d := d
reg.io.clk := clk
reg.io.rst := rst
reg.io.en := Bool(true)
reg.io.q
}
def apply(d: Bool, clk: Clock, rst: Bool): Bool = apply(d, clk, rst, false)
def apply(updateData: UInt, resetData: BigInt, enable: Bool): UInt = {
val w = updateData.getWidth max resetData.bitLength
val reg = Module(new AsyncResetRegVec(w, resetData))
reg.io.d := updateData
reg.io.en := enable
reg.io.q
}
def apply(updateData: UInt, resetData: BigInt): UInt = apply(updateData, resetData, enable=Bool(true))
def apply(updateData: UInt, enable: Bool): UInt = apply(updateData, resetData=BigInt(0), enable)
def apply(updateData: UInt): UInt = apply(updateData, resetData=BigInt(0), enable=Bool(true))
}

View File

@ -2,6 +2,7 @@ package util
import Chisel._
import cde.Parameters
import scala.math.max
// Produces 0-width value when counting to 1
class ZCounter(val n: Int) {
@ -34,3 +35,33 @@ object TwoWayCounter {
cnt
}
}
// a counter that clock gates most of its MSBs using the LSB carry-out
case class WideCounter(width: Int, inc: UInt = UInt(1), reset: Boolean = true)
{
private val isWide = width > 2*inc.getWidth
private val smallWidth = if (isWide) inc.getWidth max log2Up(width) else width
private val small = if (reset) Reg(init=UInt(0, smallWidth)) else Reg(UInt(width = smallWidth))
private val nextSmall = small +& inc
small := nextSmall
private val large = if (isWide) {
val r = if (reset) Reg(init=UInt(0, width - smallWidth)) else Reg(UInt(width = width - smallWidth))
when (nextSmall(smallWidth)) { r := r +& UInt(1) }
r
} else null
val value = if (isWide) Cat(large, small) else small
lazy val carryOut = {
val lo = (small ^ nextSmall) >> 1
if (!isWide) lo else {
val hi = Mux(nextSmall(smallWidth), large ^ (large +& UInt(1)), UInt(0)) >> 1
Cat(hi, lo)
}
}
def := (x: UInt) = {
small := x
if (isWide) large := x >> smallWidth
}
}

View File

@ -0,0 +1,134 @@
package util
import Chisel._
import chisel3.util.{DecoupledIO, Decoupled, Irrevocable, IrrevocableIO, ReadyValidIO}
class CrossingIO[T <: Data](gen: T) extends Bundle {
// Enqueue clock domain
val enq_clock = Clock(INPUT)
val enq_reset = Bool(INPUT) // synchronously deasserted wrt. enq_clock
val enq = Decoupled(gen).flip()
// Dequeue clock domain
val deq_clock = Clock(INPUT)
val deq_reset = Bool(INPUT) // synchronously deasserted wrt. deq_clock
val deq = Decoupled(gen)
}
abstract class Crossing[T <: Data] extends Module {
val io: CrossingIO[T]
}
class AsyncScope extends Module { val io = new Bundle }
object AsyncScope { def apply() = Module(new AsyncScope) }
object AsyncDecoupledCrossing
{
// takes from_source from the 'from' clock domain and puts it into the 'to' clock domain
def apply[T <: Data](from_clock: Clock, from_reset: Bool, from_source: ReadyValidIO[T], to_clock: Clock, to_reset: Bool, depth: Int = 8, sync: Int = 3): DecoupledIO[T] = {
val crossing = Module(new AsyncQueue(from_source.bits, depth, sync)).io
crossing.enq_clock := from_clock
crossing.enq_reset := from_reset
crossing.enq <> from_source
crossing.deq_clock := to_clock
crossing.deq_reset := to_reset
crossing.deq
}
}
object AsyncDecoupledTo
{
// takes source from your clock domain and puts it into the 'to' clock domain
def apply[T <: Data](to_clock: Clock, to_reset: Bool, source: ReadyValidIO[T], depth: Int = 8, sync: Int = 3): DecoupledIO[T] = {
val scope = AsyncScope()
AsyncDecoupledCrossing(scope.clock, scope.reset, source, to_clock, to_reset, depth, sync)
}
}
object AsyncDecoupledFrom
{
// takes from_source from the 'from' clock domain and puts it into your clock domain
def apply[T <: Data](from_clock: Clock, from_reset: Bool, from_source: ReadyValidIO[T], depth: Int = 8, sync: Int = 3): DecoupledIO[T] = {
val scope = AsyncScope()
AsyncDecoupledCrossing(from_clock, from_reset, from_source, scope.clock, scope.reset, depth, sync)
}
}
object PostQueueIrrevocablize
{
def apply[T <: Data](deq: DecoupledIO[T]): IrrevocableIO[T] = {
val irr = Wire(new IrrevocableIO(deq.bits))
irr.bits := deq.bits
irr.valid := deq.valid
deq.ready := irr.ready
irr
}
}
object AsyncIrrevocableCrossing {
def apply[T <: Data](from_clock: Clock, from_reset: Bool, from_source: ReadyValidIO[T], to_clock: Clock, to_reset: Bool, depth: Int = 8, sync: Int = 3): IrrevocableIO[T] = {
PostQueueIrrevocablize(AsyncDecoupledCrossing(from_clock, from_reset, from_source, to_clock, to_reset, depth, sync))
}
}
object AsyncIrrevocableTo
{
// takes source from your clock domain and puts it into the 'to' clock domain
def apply[T <: Data](to_clock: Clock, to_reset: Bool, source: ReadyValidIO[T], depth: Int = 8, sync: Int = 3): IrrevocableIO[T] = {
PostQueueIrrevocablize(AsyncDecoupledTo(to_clock, to_reset, source, depth, sync))
}
}
object AsyncIrrevocableFrom
{
// takes from_source from the 'from' clock domain and puts it into your clock domain
def apply[T <: Data](from_clock: Clock, from_reset: Bool, from_source: ReadyValidIO[T], depth: Int = 8, sync: Int = 3): IrrevocableIO[T] = {
PostQueueIrrevocablize(AsyncDecoupledFrom(from_clock, from_reset, from_source, depth, sync))
}
}
/**
* This helper object synchronizes a level-sensitive signal from one
* clock domain to another.
*/
object LevelSyncCrossing {
class SynchronizerBackend(sync: Int, _clock: Clock) extends Module(Some(_clock)) {
val io = new Bundle {
val in = Bool(INPUT)
val out = Bool(OUTPUT)
}
io.out := ShiftRegister(io.in, sync)
}
class SynchronizerFrontend(_clock: Clock) extends Module(Some(_clock)) {
val io = new Bundle {
val in = Bool(INPUT)
val out = Bool(OUTPUT)
}
io.out := RegNext(io.in)
}
def apply(from_clock: Clock, to_clock: Clock, in: Bool, sync: Int = 2): Bool = {
val front = Module(new SynchronizerFrontend(from_clock))
val back = Module(new SynchronizerBackend(sync, to_clock))
front.io.in := in
back.io.in := front.io.out
back.io.out
}
}
object LevelSyncTo {
def apply(to_clock: Clock, in: Bool, sync: Int = 2): Bool = {
val scope = AsyncScope()
LevelSyncCrossing(scope.clock, to_clock, in, sync)
}
}
object LevelSyncFrom {
def apply(from_clock: Clock, in: Bool, sync: Int = 2): Bool = {
val scope = AsyncScope()
LevelSyncCrossing(from_clock, scope.clock, in, sync)
}
}

View File

@ -2,6 +2,7 @@ package util
import Chisel._
import cde.Parameters
import scala.math._
class ParameterizedBundle(implicit p: Parameters) extends Bundle {
override def cloneType = {
@ -26,3 +27,113 @@ class DecoupledHelper(val rvs: Seq[Bool]) {
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
}
object MuxT {
def apply[T <: Data, U <: Data](cond: Bool, con: (T, U), alt: (T, U)): (T, U) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2))
def apply[T <: Data, U <: Data, W <: Data](cond: Bool, con: (T, U, W), alt: (T, U, W)): (T, U, W) =
(Mux(cond, con._1, alt._1), Mux(cond, con._2, alt._2), Mux(cond, con._3, alt._3))
}
object Str
{
def apply(s: String): UInt = {
var i = BigInt(0)
require(s.forall(validChar _))
for (c <- s)
i = (i << 8) | c
UInt(i, s.length*8)
}
def apply(x: Char): UInt = {
require(validChar(x))
UInt(x.toInt, 8)
}
def apply(x: UInt): UInt = apply(x, 10)
def apply(x: UInt, radix: Int): UInt = {
val rad = UInt(radix)
val w = x.getWidth
require(w > 0)
var q = x
var s = digit(q % rad)
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
s = Cat(Mux(Bool(radix == 10) && q === UInt(0), Str(' '), digit(q % rad)), s)
}
s
}
def apply(x: SInt): UInt = apply(x, 10)
def apply(x: SInt, radix: Int): UInt = {
val neg = x < SInt(0)
val abs = x.abs
if (radix != 10) {
Cat(Mux(neg, Str('-'), Str(' ')), Str(abs, radix))
} else {
val rad = UInt(radix)
val w = abs.getWidth
require(w > 0)
var q = abs
var s = digit(q % rad)
var needSign = neg
for (i <- 1 until ceil(log(2)/log(radix)*w).toInt) {
q = q / rad
val placeSpace = q === UInt(0)
val space = Mux(needSign, Str('-'), Str(' '))
needSign = needSign && !placeSpace
s = Cat(Mux(placeSpace, space, digit(q % rad)), s)
}
Cat(Mux(needSign, Str('-'), Str(' ')), s)
}
}
private def digit(d: UInt): UInt = Mux(d < UInt(10), Str('0')+d, Str(('a'-10).toChar)+d)(7,0)
private def validChar(x: Char) = x == (x & 0xFF)
}
object Split
{
// is there a better way to do do this?
def apply(x: Bits, n0: Int) = {
val w = checkWidth(x, n0)
(x(w-1,n0), x(n0-1,0))
}
def apply(x: Bits, n1: Int, n0: Int) = {
val w = checkWidth(x, n1, n0)
(x(w-1,n1), x(n1-1,n0), x(n0-1,0))
}
def apply(x: Bits, n2: Int, n1: Int, n0: Int) = {
val w = checkWidth(x, n2, n1, n0)
(x(w-1,n2), x(n2-1,n1), x(n1-1,n0), x(n0-1,0))
}
private def checkWidth(x: Bits, n: Int*) = {
val w = x.getWidth
def decreasing(x: Seq[Int]): Boolean =
if (x.tail.isEmpty) true
else x.head >= x.tail.head && decreasing(x.tail)
require(decreasing(w :: n.toList))
w
}
}
object Random
{
def apply(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) random(log2Up(mod)-1,0)
else PriorityEncoder(partition(apply(1 << log2Up(mod*8), random), mod))
}
def apply(mod: Int): UInt = apply(mod, randomizer)
def oneHot(mod: Int, random: UInt): UInt = {
if (isPow2(mod)) UIntToOH(random(log2Up(mod)-1,0))
else PriorityEncoderOH(partition(apply(1 << log2Up(mod*8), random), mod)).asUInt
}
def oneHot(mod: Int): UInt = oneHot(mod, randomizer)
private def randomizer = LFSR16()
private def round(x: Double): Int =
if (x.toInt.toDouble == x) x.toInt else (x.toInt + 1) & -2
private def partition(value: UInt, slices: Int) =
Seq.tabulate(slices)(i => value < round((i << value.getWidth).toDouble / slices))
}

View File

@ -0,0 +1,48 @@
import Chisel._
package object util {
implicit class UIntIsOneOf(val x: UInt) extends AnyVal {
def isOneOf(s: Seq[UInt]): Bool = s.map(x === _).reduce(_||_)
def isOneOf(u1: UInt, u2: UInt*): Bool = isOneOf(u1 +: u2.toSeq)
}
implicit class SeqToAugmentedSeq[T <: Data](val x: Seq[T]) extends AnyVal {
def apply(idx: UInt): T = {
if (x.size == 1) {
x.head
} else {
val half = 1 << (log2Ceil(x.size) - 1)
val newIdx = idx & UInt(half - 1)
Mux(idx >= UInt(half), x.drop(half)(newIdx), x.take(half)(newIdx))
}
}
def asUInt(): UInt = Cat(x.map(_.asUInt).reverse)
}
implicit def uintToBitPat(x: UInt): BitPat = BitPat(x)
implicit def intToUInt(x: Int): UInt = UInt(x)
implicit def bigIntToUInt(x: BigInt): UInt = UInt(x)
implicit def booleanToBool(x: Boolean): Bits = Bool(x)
implicit def intSeqToUIntSeq(x: Seq[Int]): Seq[UInt] = x.map(UInt(_))
implicit def wcToUInt(c: WideCounter): UInt = c.value
implicit class UIntToAugmentedUInt(val x: UInt) extends AnyVal {
def sextTo(n: Int): UInt =
if (x.getWidth == n) x
else Cat(Fill(n - x.getWidth, x(x.getWidth-1)), x)
def extract(hi: Int, lo: Int): UInt = {
if (hi == lo-1) UInt(0)
else x(hi, lo)
}
}
implicit class BooleanToAugmentedBoolean(val x: Boolean) extends AnyVal {
def toInt: Int = if (x) 1 else 0
// this one's snagged from scalaz
def option[T](z: => T): Option[T] = if (x) Some(z) else None
}
}