1
0

Merge pull request #333 from ucb-bar/tl2-api-changes

Tl2 api changes
This commit is contained in:
Wesley W. Terpstra 2016-09-22 21:20:27 -07:00 committed by GitHub
commit 7ee79efc15
12 changed files with 73 additions and 80 deletions

View File

@ -49,7 +49,7 @@ abstract class BaseTop(q: Parameters) extends LazyModule {
val legacy = LazyModule(new TLLegacy()(p.alterPartial({ case TLId => "L2toMMIO" }))) val legacy = LazyModule(new TLLegacy()(p.alterPartial({ case TLId => "L2toMMIO" })))
peripheryBus.node := TLWidthWidget(TLBuffer(TLAtomicAutomata()(TLHintHandler(legacy.node))), legacy.tlDataBytes) peripheryBus.node := TLWidthWidget(legacy.tlDataBytes)(TLBuffer()(TLAtomicAutomata()(TLHintHandler()(legacy.node))))
} }
abstract class BaseTopBundle(val p: Parameters) extends Bundle { abstract class BaseTopBundle(val p: Parameters) extends Bundle {

View File

@ -288,7 +288,7 @@ trait PeripheryCoreplexLocalInterrupter extends LazyModule with HasPeripheryPara
val clintConfig = CoreplexLocalInterrupterConfig(beatBytes) val clintConfig = CoreplexLocalInterrupterConfig(beatBytes)
val clint = LazyModule(new CoreplexLocalInterrupter(clintConfig)(innerMMIOParams)) val clint = LazyModule(new CoreplexLocalInterrupter(clintConfig)(innerMMIOParams))
// The periphery bus is 32-bit, so we may need to adapt its width to XLen // The periphery bus is 32-bit, so we may need to adapt its width to XLen
clint.node := TLFragmenter(TLWidthWidget(peripheryBus.node, 4), beatBytes, 256) clint.node := TLFragmenter(beatBytes, 256)(TLWidthWidget(4)(peripheryBus.node))
} }
trait PeripheryCoreplexLocalInterrupterBundle { trait PeripheryCoreplexLocalInterrupterBundle {
@ -314,7 +314,7 @@ trait PeripheryBootROM extends LazyModule {
val address = 0x1000 val address = 0x1000
val size = 0x1000 val size = 0x1000
val rom = LazyModule(new TLROM(address, size, GenerateBootROM(p, address)) { override def name = "bootrom" }) val rom = LazyModule(new TLROM(address, size, GenerateBootROM(p, address)) { override def name = "bootrom" })
rom.node := TLFragmenter(peripheryBus.node, 4, 256) rom.node := TLFragmenter(4, 256)(peripheryBus.node)
} }
trait PeripheryBootROMBundle { trait PeripheryBootROMBundle {
@ -337,7 +337,7 @@ trait PeripheryTestRAM extends LazyModule {
val ramSize = 0x1000 val ramSize = 0x1000
val sram = LazyModule(new TLRAM(AddressSet(ramBase, ramSize-1)) { override def name = "testram" }) val sram = LazyModule(new TLRAM(AddressSet(ramBase, ramSize-1)) { override def name = "testram" })
sram.node := TLFragmenter(peripheryBus.node, 4, 256) sram.node := TLFragmenter(4, 256)(peripheryBus.node)
} }
trait PeripheryTestRAMBundle { trait PeripheryTestRAMBundle {

View File

@ -74,14 +74,11 @@ trait CoreplexLocalInterrupterModule extends Module with HasRegMap with MixCorep
* bff8 mtime lo * bff8 mtime lo
* bffc mtime hi * bffc mtime hi
*/ */
val ipi_base = 0
val timecmp_base = c.timecmpOffset(0) / c.beatBytes
val time_base = c.timeOffset / c.beatBytes
regmap(( regmap(
RegField.split(makeRegFields(ipi), ipi_base, c.beatBytes) ++ 0 -> makeRegFields(ipi),
RegField.split(makeRegFields(timecmp.flatten), timecmp_base, c.beatBytes) ++ c.timecmpOffset(0) -> makeRegFields(timecmp.flatten),
RegField.split(makeRegFields(time), time_base, c.beatBytes)):_*) c.timeOffset -> makeRegFields(time))
def makeRegFields(s: Seq[UInt]) = s.map(r => RegField(regWidth, r)) def makeRegFields(s: Seq[UInt]) = s.map(r => RegField(regWidth, r))
} }

View File

@ -48,12 +48,12 @@ class TLBuffer(a: Int = 2, b: Int = 2, c: Int = 2, d: Int = 2, e: Int = 2, pipe:
object TLBuffer object TLBuffer
{ {
// applied to the TL source node; y.node := TLBuffer(x.node) // applied to the TL source node; y.node := TLBuffer(x.node)
def apply(x: TLBaseNode) (implicit sourceInfo: SourceInfo): TLBaseNode = apply(x, 2) def apply() (x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(2)(x)
def apply(x: TLBaseNode, entries: Int) (implicit sourceInfo: SourceInfo): TLBaseNode = apply(x, entries, true) def apply(entries: Int) (x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(entries, true)(x)
def apply(x: TLBaseNode, entries: Int, pipe: Boolean) (implicit sourceInfo: SourceInfo): TLBaseNode = apply(x, entries, entries, pipe) def apply(entries: Int, pipe: Boolean) (x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(entries, entries, pipe)(x)
def apply(x: TLBaseNode, ace: Int, bd: Int) (implicit sourceInfo: SourceInfo): TLBaseNode = apply(x, ace, bd, true) def apply(ace: Int, bd: Int) (x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(ace, bd, true)(x)
def apply(x: TLBaseNode, ace: Int, bd: Int, pipe: Boolean)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(x, ace, bd, ace, bd, ace, pipe) def apply(ace: Int, bd: Int, pipe: Boolean)(x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = apply(ace, bd, ace, bd, ace, pipe)(x)
def apply(x: TLBaseNode, a: Int, b: Int, c: Int, d: Int, e: Int, pipe: Boolean = true)(implicit sourceInfo: SourceInfo): TLBaseNode = { def apply(a: Int, b: Int, c: Int, d: Int, e: Int, pipe: Boolean = true)(x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = {
val buffer = LazyModule(new TLBuffer(a, b, c, d, e, pipe)) val buffer = LazyModule(new TLBuffer(a, b, c, d, e, pipe))
buffer.node := x buffer.node := x
buffer.node buffer.node

View File

@ -27,7 +27,7 @@ trait ExampleModule extends HasRegMap
regmap( regmap(
0 -> Seq( 0 -> Seq(
RegField(params.num, state)), RegField(params.num, state)),
1 -> Seq( 4 -> Seq(
RegField.w1ToClear(4, pending, state))) RegField.w1ToClear(4, pending, state)))
} }

View File

@ -244,7 +244,7 @@ class TLFragmenter(minSize: Int, maxSize: Int, alwaysMin: Boolean = false) exten
object TLFragmenter object TLFragmenter
{ {
// applied to the TL source node; y.node := TLFragmenter(x.node, 256, 4) // applied to the TL source node; y.node := TLFragmenter(x.node, 256, 4)
def apply(x: TLBaseNode, minSize: Int, maxSize: Int, alwaysMin: Boolean = false)(implicit sourceInfo: SourceInfo): TLBaseNode = { def apply(minSize: Int, maxSize: Int, alwaysMin: Boolean = false)(x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = {
val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin)) val fragmenter = LazyModule(new TLFragmenter(minSize, maxSize, alwaysMin))
fragmenter.node := x fragmenter.node := x
fragmenter.node fragmenter.node

View File

@ -222,11 +222,11 @@ class TLFuzzRAM extends LazyModule
model.node := fuzz.node model.node := fuzz.node
xbar2.node := TLAtomicAutomata()(model.node) xbar2.node := TLAtomicAutomata()(model.node)
ram2.node := TLFragmenter(xbar2.node, 16, 256) ram2.node := TLFragmenter(16, 256)(xbar2.node)
xbar.node := TLWidthWidget(TLHintHandler(xbar2.node), 16) xbar.node := TLWidthWidget(16)(TLHintHandler()(xbar2.node))
cross.node := TLFragmenter(TLBuffer(xbar.node), 4, 256) cross.node := TLFragmenter(4, 256)(TLBuffer()(xbar.node))
val monitor = (ram.node := cross.node) val monitor = (ram.node := cross.node)
gpio.node := TLFragmenter(TLBuffer(xbar.node), 4, 32) gpio.node := TLFragmenter(4, 32)(TLBuffer()(xbar.node))
lazy val module = new LazyModuleImp(this) with HasUnitTestIO { lazy val module = new LazyModuleImp(this) with HasUnitTestIO {
io.finished := fuzz.module.io.finished io.finished := fuzz.module.io.finished

View File

@ -135,7 +135,7 @@ class TLHintHandler(supportManagers: Boolean = true, supportClients: Boolean = f
object TLHintHandler object TLHintHandler
{ {
// applied to the TL source node; y.node := TLHintHandler(x.node) // applied to the TL source node; y.node := TLHintHandler(x.node)
def apply(x: TLBaseNode, supportManagers: Boolean = true, supportClients: Boolean = false, passthrough: Boolean = true)(implicit sourceInfo: SourceInfo): TLBaseNode = { def apply(supportManagers: Boolean = true, supportClients: Boolean = false, passthrough: Boolean = true)(x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = {
val hints = LazyModule(new TLHintHandler(supportManagers, supportClients, passthrough)) val hints = LazyModule(new TLHintHandler(supportManagers, supportClients, passthrough))
hints.node := x hints.node := x
hints.node hints.node

View File

@ -77,7 +77,7 @@ object RegWriteFn
implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { Bool(true) }) implicit def apply(x: Unit): RegWriteFn = RegWriteFn((valid, data) => { Bool(true) })
} }
case class RegField(width: Int, read: RegReadFn, write: RegWriteFn) case class RegField(width: Int, read: RegReadFn, write: RegWriteFn, name: String, description: String)
{ {
require (width > 0) require (width > 0)
def pipelined = !read.combinational || !write.combinational def pipelined = !read.combinational || !write.combinational
@ -85,11 +85,15 @@ case class RegField(width: Int, read: RegReadFn, write: RegWriteFn)
object RegField object RegField
{ {
// Byte address => sequence of bitfields, lowest index => lowest address
type Map = (Int, Seq[RegField]) type Map = (Int, Seq[RegField])
def apply(n: Int) : RegField = apply(n, (), ())
def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw) def apply(n: Int) : RegField = apply(n, (), (), "", "")
def r(n: Int, r: RegReadFn) : RegField = apply(n, r, ()) def apply(n: Int, r: RegReadFn, w: RegWriteFn) : RegField = apply(n, r, w, "", "")
def w(n: Int, w: RegWriteFn) : RegField = apply(n, (), w) def apply(n: Int, rw: UInt) : RegField = apply(n, rw, rw, "", "")
def apply(n: Int, rw: UInt, name: String, description: String) : RegField = apply(n, rw, rw, name, description)
def r(n: Int, r: RegReadFn, name: String = "", description: String = "") : RegField = apply(n, r, (), name, description)
def w(n: Int, w: RegWriteFn, name: String = "", description: String = "") : RegField = apply(n, (), w, name, description)
// This RegField allows 'set' to set bits in 'reg'. // This RegField allows 'set' to set bits in 'reg'.
// and to clear bits when the bus writes bits of value 1. // and to clear bits when the bus writes bits of value 1.
@ -105,28 +109,6 @@ object RegField
bb.d := data bb.d := data
Bool(true) Bool(true)
})) }))
// Split a large register into a sequence of byte fields
// The bytes can be individually written, as they are one byte per field
def bytes(x: UInt): Seq[RegField] = {
require (x.getWidth % 8 == 0)
val bytes = Seq.tabulate(x.getWidth/8) { i => x(8*(i+1)-1, 8*i) }
val wires = bytes.map { b => Wire(init = b) }
x := Cat(wires.reverse)
Seq.tabulate(x.getWidth/8) { i =>
RegField(8, bytes(i), RegWriteFn { (valid, data) =>
when (valid) { wires(i) := data }
Bool(true)
})
}
}
// Divide a long sequence of RegFields into a maximum sized registers
// Your input RegFields may not cross a beatBytes boundary!
def split(fields: Seq[RegField], base: Int, beatBytes: Int = 4): Seq[RegField.Map] = {
val offsets = fields.map(_.width).scanLeft(0)(_ + _).init
(offsets zip fields).groupBy(_._1 / (beatBytes*8)).toList.map(r => (r._1 + base, r._2.map(_._2)))
}
} }
trait HasRegMap trait HasRegMap

View File

@ -29,26 +29,35 @@ object RegMapper
{ {
// Create a generic register-based device // Create a generic register-based device
def apply(bytes: Int, concurrency: Int, undefZero: Boolean, in: DecoupledIO[RegMapperInput], mapping: RegField.Map*) = { def apply(bytes: Int, concurrency: Int, undefZero: Boolean, in: DecoupledIO[RegMapperInput], mapping: RegField.Map*) = {
val regmap = mapping.toList.filter(!_._2.isEmpty) val bytemap = mapping.toList
require (!regmap.isEmpty)
// Ensure no register appears twice
regmap.combinations(2).foreach { case Seq((reg1, _), (reg2, _)) =>
require (reg1 != reg2)
}
// Don't be an asshole... // Don't be an asshole...
regmap.foreach { reg => require (reg._1 >= 0) } bytemap.foreach { byte => require (byte._1 >= 0) }
// Transform all fields into bit offsets Seq[(bit, field)]
val bitmap = bytemap.map { case (byte, fields) =>
val bits = fields.scanLeft(byte * 8)(_ + _.width).init
bits zip fields
}.flatten.sortBy(_._1)
// Detect overlaps
(bitmap.init zip bitmap.tail) foreach { case ((lbit, lfield), (rbit, rfield)) =>
require (lbit + lfield.width <= rbit, s"Register map overlaps at bit ${rbit}.")
}
// Group those fields into bus words Map[word, List[(bit, field)]]
val wordmap = bitmap.groupBy(_._1 / (8*bytes))
// Make sure registers fit // Make sure registers fit
val inParams = in.bits.params val inParams = in.bits.params
val inBits = inParams.indexBits val inBits = inParams.indexBits
assert (regmap.map(_._1).max < (1 << inBits)) assert (wordmap.keySet.max < (1 << inBits), "Register map does not fit in device")
val out = Wire(Irrevocable(new RegMapperOutput(inParams))) val out = Wire(Irrevocable(new RegMapperOutput(inParams)))
val front = Wire(Irrevocable(new RegMapperInput(inParams))) val front = Wire(Irrevocable(new RegMapperInput(inParams)))
front.bits := in.bits front.bits := in.bits
// Must this device pipeline the control channel? // Must this device pipeline the control channel?
val pipelined = regmap.map(_._2.map(_.pipelined)).flatten.reduce(_ || _) val pipelined = wordmap.values.map(_.map(_._2.pipelined)).flatten.reduce(_ || _)
val depth = concurrency val depth = concurrency
require (depth >= 0) require (depth >= 0)
require (!pipelined || depth > 0, "Register-based device with request/response handshaking needs concurrency > 0") require (!pipelined || depth > 0, "Register-based device with request/response handshaking needs concurrency > 0")
@ -60,7 +69,7 @@ object RegMapper
def ofBits(bits: List[Boolean]) = bits.foldRight(0){ case (x,y) => (if (x) 1 else 0) | y << 1 } def ofBits(bits: List[Boolean]) = bits.foldRight(0){ case (x,y) => (if (x) 1 else 0) | y << 1 }
// Find the minimal mask that can decide the register map // Find the minimal mask that can decide the register map
val mask = AddressDecoder(regmap.map(_._1)) val mask = AddressDecoder(wordmap.keySet.toList)
val maskMatch = ~UInt(mask, width = inBits) val maskMatch = ~UInt(mask, width = inBits)
val maskFilter = toBits(mask) val maskFilter = toBits(mask)
val maskBits = maskFilter.filter(x => x).size val maskBits = maskFilter.filter(x => x).size
@ -75,17 +84,22 @@ object RegMapper
val iRightReg = Array.fill(regSize) { Bool(true) } val iRightReg = Array.fill(regSize) { Bool(true) }
val oRightReg = Array.fill(regSize) { Bool(true) } val oRightReg = Array.fill(regSize) { Bool(true) }
// Flatten the regmap into (RegIndex:Int, Offset:Int, field:RegField) // Transform the wordmap into minimal decoded indexes, Seq[(index, bit, field)]
val flat = regmap.map { case (reg, fields) => val flat = wordmap.toList.map { case (word, fields) =>
val offsets = fields.scanLeft(0)(_ + _.width).init val index = regIndexI(word)
val index = regIndexI(reg) val uint = UInt(word, width = inBits)
val uint = UInt(reg, width = inBits)
if (undefZero) { if (undefZero) {
iRightReg(index) = ((front.bits.index ^ uint) & maskMatch) === UInt(0) iRightReg(index) = ((front.bits.index ^ uint) & maskMatch) === UInt(0)
oRightReg(index) = ((back .bits.index ^ uint) & maskMatch) === UInt(0) oRightReg(index) = ((back .bits.index ^ uint) & maskMatch) === UInt(0)
} }
// println("mapping 0x%x -> 0x%x for 0x%x/%d".format(reg, index, mask, maskBits)) // Confirm that no field spans a word boundary
(offsets zip fields) map { case (o, f) => (index, o, f) } fields foreach { case (bit, field) =>
val off = bit - 8*bytes*word
// println(s"Reg ${word}: [${off}, ${off+field.width})")
require (off + field.width <= bytes * 8, s"Field at word ${word}*(${bytes}B) has bits [${off}, ${off+field.width}), which exceeds word limit.")
}
// println("mapping 0x%x -> 0x%x for 0x%x/%d".format(word, index, mask, maskBits))
fields.map { case (bit, field) => (index, bit-8*bytes*word, field) }
}.flatten }.flatten
// Forward declaration of all flow control signals // Forward declaration of all flow control signals

View File

@ -183,14 +183,14 @@ object RRTest0Map
// All fields must respect byte alignment, or else it won't behave like an SRAM // All fields must respect byte alignment, or else it won't behave like an SRAM
val map = Seq( val map = Seq(
0 -> Seq(aa(8), ar(8), ad(8), ae(8)), 0 -> Seq(aa(8), ar(8), ad(8), ae(8)),
1 -> Seq(ra(8), rr(8), rd(8), re(8)), 4 -> Seq(ra(8), rr(8), rd(8), re(8)),
2 -> Seq(da(8), dr(8), dd(8), de(8)), 8 -> Seq(da(8), dr(8), dd(8), de(8)),
3 -> Seq(ea(8), er(8), ed(8), ee(8)), 12 -> Seq(ea(8), er(8), ed(8), ee(8)),
4 -> Seq(aa(3), ar(5), ad(1), ae(7), ra(2), rr(6), rd(4), re(4)), 16 -> Seq(aa(3), ar(5), ad(1), ae(7), ra(2), rr(6), rd(4), re(4)),
5 -> Seq(da(3), dr(5), dd(1), de(7), ea(2), er(6), ed(4), ee(4)), 20 -> Seq(da(3), dr(5), dd(1), de(7), ea(2), er(6), ed(4), ee(4)),
6 -> Seq(aa(8), rr(8), dd(8), ee(8)), 24 -> Seq(aa(8), rr(8), dd(8), ee(8)),
7 -> Seq(ar(8), rd(8), de(8), ea(8))) 28 -> Seq(ar(8), rd(8), de(8), ea(8)))
} }
object RRTest1Map object RRTest1Map
@ -203,8 +203,8 @@ object RRTest1Map
def bb(bits: Int) = request(bits, busy, busy) def bb(bits: Int) = request(bits, busy, busy)
val map = RRTest0Map.map.take(6) ++ Seq( val map = RRTest0Map.map.take(6) ++ Seq(
6 -> Seq(pp(8), pb(8), bp(8), bb(8)), 24 -> Seq(pp(8), pb(8), bp(8), bb(8)),
7 -> Seq(pp(3), pb(5), bp(1), bb(7), pb(5), bp(3), pp(4), bb(4))) 28 -> Seq(pp(3), pb(5), bp(1), bb(7), pb(5), bp(3), pp(4), bb(4)))
} }
trait RRTest0Bundle trait RRTest0Bundle

View File

@ -174,7 +174,7 @@ class TLWidthWidget(innerBeatBytes: Int) extends LazyModule
object TLWidthWidget object TLWidthWidget
{ {
// applied to the TL source node; y.node := WidthWidget(x.node, 16) // applied to the TL source node; y.node := WidthWidget(x.node, 16)
def apply(x: TLBaseNode, innerBeatBytes: Int)(implicit sourceInfo: SourceInfo): TLBaseNode = { def apply(innerBeatBytes: Int)(x: TLBaseNode)(implicit sourceInfo: SourceInfo): TLBaseNode = {
val widget = LazyModule(new TLWidthWidget(innerBeatBytes)) val widget = LazyModule(new TLWidthWidget(innerBeatBytes))
widget.node := x widget.node := x
widget.node widget.node