1
0

reorganize moving non-submodule packages into src/main/scala

This commit is contained in:
Howard Mao
2016-08-19 10:58:56 -07:00
parent f78da0b0ea
commit 7b20609d4d
110 changed files with 3 additions and 381 deletions

View File

@ -0,0 +1,148 @@
// See LICENSE for license details.
package junctions
import Chisel._
import cde.{Parameters, Field}
import scala.collection.mutable.HashMap
case object PAddrBits extends Field[Int]
case object GlobalAddrMap extends Field[AddrMap]
trait HasAddrMapParameters {
implicit val p: Parameters
val paddrBits = p(PAddrBits)
val addrMap = p(GlobalAddrMap)
}
case class MemAttr(prot: Int, cacheable: Boolean = false)
sealed abstract class MemRegion {
def start: BigInt
def size: BigInt
def numSlaves: Int
def attr: MemAttr
def containsAddress(x: UInt) = UInt(start) <= x && x < UInt(start + size)
}
case class MemSize(size: BigInt, attr: MemAttr) extends MemRegion {
def start = 0
def numSlaves = 1
}
case class MemRange(start: BigInt, size: BigInt, attr: MemAttr) extends MemRegion {
def numSlaves = 1
}
object AddrMapProt {
val R = 0x1
val W = 0x2
val X = 0x4
val RW = R | W
val RX = R | X
val RWX = R | W | X
val SZ = 3
}
class AddrMapProt extends Bundle {
val x = Bool()
val w = Bool()
val r = Bool()
}
case class AddrMapEntry(name: String, region: MemRegion)
object AddrMap {
def apply(elems: AddrMapEntry*): AddrMap = new AddrMap(elems)
}
class AddrMap(
entriesIn: Seq[AddrMapEntry],
val start: BigInt = BigInt(0),
val collapse: Boolean = false) extends MemRegion {
private val slavePorts = HashMap[String, Int]()
private val mapping = HashMap[String, MemRegion]()
def isEmpty = entries.isEmpty
def length = entries.size
def numSlaves = slavePorts.size
val (size: BigInt, entries: Seq[AddrMapEntry], attr: MemAttr) = {
var ind = 0
var base = start
var rebasedEntries = collection.mutable.ArrayBuffer[AddrMapEntry]()
var prot = 0
var cacheable = true
for (AddrMapEntry(name, r) <- entriesIn) {
if (r.start != 0) {
val align = BigInt(1) << log2Ceil(r.size)
require(r.start >= base, s"region $name base address 0x${r.start.toString(16)} overlaps previous base 0x${base.toString(16)}")
base = r.start
} else {
base = (base + r.size - 1) / r.size * r.size
}
r match {
case r: AddrMap =>
val subMap = new AddrMap(r.entries, base, r.collapse)
rebasedEntries += AddrMapEntry(name, subMap)
mapping += name -> subMap
mapping ++= subMap.mapping.map { case (k, v) => s"$name:$k" -> v }
if (r.collapse) {
slavePorts += (name -> ind)
ind += 1
} else {
slavePorts ++= subMap.slavePorts.map {
case (k, v) => s"$name:$k" -> (ind + v)
}
ind += r.numSlaves
}
case _ =>
val e = MemRange(base, r.size, r.attr)
rebasedEntries += AddrMapEntry(name, e)
mapping += name -> e
slavePorts += name -> ind
ind += r.numSlaves
}
base += r.size
prot |= r.attr.prot
cacheable &&= r.attr.cacheable
}
(base - start, rebasedEntries, MemAttr(prot, cacheable))
}
val flatten: Seq[AddrMapEntry] = {
mapping.toSeq.map {
case (name, range: MemRange) => Some(AddrMapEntry(name, range))
case _ => None
}.flatten.sortBy(_.region.start)
}
def toRange: MemRange = MemRange(start, size, attr)
def apply(name: String): MemRegion = mapping(name)
def contains(name: String): Boolean = mapping.contains(name)
def port(name: String): Int = slavePorts(name)
def subMap(name: String): AddrMap = mapping(name).asInstanceOf[AddrMap]
def isInRegion(name: String, addr: UInt): Bool = mapping(name).containsAddress(addr)
def isCacheable(addr: UInt): Bool = {
flatten.filter(_.region.attr.cacheable).map(
_.region.containsAddress(addr)
).foldLeft(Bool(false))(_ || _)
}
def isValid(addr: UInt): Bool = {
flatten.map(_.region.containsAddress(addr)).foldLeft(Bool(false))(_ || _)
}
def getProt(addr: UInt): AddrMapProt = {
val protForRegion = flatten.map { entry =>
Mux(entry.region.containsAddress(addr),
UInt(entry.region.attr.prot, AddrMapProt.SZ), UInt(0))
}
new AddrMapProt().fromBits(protForRegion.reduce(_|_))
}
}

View File

@ -0,0 +1,333 @@
package junctions
import Chisel._
import scala.math.max
import cde.{Parameters, Field}
trait HasAtosParameters extends HasNastiParameters {
// round up to a multiple of 32
def roundup(n: Int) = 32 * ((n - 1) / 32 + 1)
val atosUnionBits = max(
nastiXIdBits + nastiXDataBits + nastiWStrobeBits + 1,
nastiXIdBits + nastiXBurstBits +
nastiXSizeBits + nastiXLenBits + nastiXAddrBits)
val atosIdBits = nastiXIdBits
val atosTypBits = 2
val atosRespBits = nastiXRespBits
val atosDataBits = nastiXDataBits
val atosAddrOffset = atosIdBits
val atosLenOffset = atosIdBits + nastiXAddrBits
val atosSizeOffset = atosLenOffset + nastiXLenBits
val atosBurstOffset = atosSizeOffset + nastiXSizeBits
val atosDataOffset = atosIdBits
val atosStrobeOffset = nastiXDataBits + atosIdBits
val atosLastOffset = atosStrobeOffset + nastiWStrobeBits
val atosRequestBits = roundup(atosTypBits + atosUnionBits)
val atosResponseBits = roundup(atosTypBits + atosIdBits + atosRespBits + atosDataBits + 1)
val atosRequestBytes = atosRequestBits / 8
val atosResponseBytes = atosResponseBits / 8
val atosRequestWords = atosRequestBytes / 4
val atosResponseWords = atosResponseBytes / 4
}
abstract class AtosModule(implicit val p: Parameters)
extends Module with HasAtosParameters
abstract class AtosBundle(implicit val p: Parameters)
extends ParameterizedBundle()(p) with HasAtosParameters
object AtosRequest {
def arType = UInt("b00")
def awType = UInt("b01")
def wType = UInt("b10")
def apply(typ: UInt, union: UInt)(implicit p: Parameters): AtosRequest = {
val areq = Wire(new AtosRequest)
areq.typ := typ
areq.union := union
areq
}
def apply(ar: NastiReadAddressChannel)(implicit p: Parameters): AtosRequest =
apply(arType, Cat(ar.burst, ar.size, ar.len, ar.addr, ar.id))
def apply(aw: NastiWriteAddressChannel)(implicit p: Parameters): AtosRequest =
apply(awType, Cat(aw.burst, aw.size, aw.len, aw.addr, aw.id))
def apply(w: NastiWriteDataChannel)(implicit p: Parameters): AtosRequest =
apply(wType, Cat(w.last, w.strb, w.data, w.id))
}
class AtosRequest(implicit p: Parameters)
extends AtosBundle()(p) with Serializable {
val typ = UInt(width = atosTypBits)
val union = UInt(width = atosUnionBits)
def burst(dummy: Int = 0) =
union(atosUnionBits - 1, atosBurstOffset)
def size(dummy: Int = 0) =
union(atosBurstOffset - 1, atosSizeOffset)
def len(dummy: Int = 0) =
union(atosSizeOffset - 1, atosLenOffset)
def addr(dummy: Int = 0) =
union(atosLenOffset - 1, atosAddrOffset)
def id(dummy: Int = 0) =
union(atosIdBits - 1, 0)
def data(dummy: Int = 0) =
union(atosStrobeOffset - 1, atosDataOffset)
def strb(dummy: Int = 0) =
union(atosLastOffset - 1, atosStrobeOffset)
def last(dummy: Int = 0) =
union(atosLastOffset)
def has_addr(dummy: Int = 0) =
typ === AtosRequest.arType || typ === AtosRequest.awType
def has_data(dummy: Int = 0) =
typ === AtosRequest.wType
def is_last(dummy: Int = 0) =
typ === AtosRequest.arType || (typ === AtosRequest.wType && last())
def nbits: Int = atosRequestBits
def resp_len(dummy: Int = 0) =
MuxLookup(typ, UInt(0), Seq(
AtosRequest.arType -> (len() + UInt(1)),
AtosRequest.awType -> UInt(1)))
}
object AtosResponse {
def rType = UInt("b00")
def bType = UInt("b01")
def apply(typ: UInt, id: UInt, resp: UInt, data: UInt, last: Bool)
(implicit p: Parameters): AtosResponse = {
val aresp = Wire(new AtosResponse)
aresp.typ := typ
aresp.id := id
aresp.resp := resp
aresp.data := data
aresp.last := last
aresp
}
def apply(r: NastiReadDataChannel)(implicit p: Parameters): AtosResponse =
apply(rType, r.id, r.resp, r.data, r.last)
def apply(b: NastiWriteResponseChannel)(implicit p: Parameters): AtosResponse =
apply(bType, b.id, b.resp, UInt(0), Bool(false))
}
class AtosResponse(implicit p: Parameters)
extends AtosBundle()(p) with Serializable {
val typ = UInt(width = atosTypBits)
val id = UInt(width = atosIdBits)
val resp = UInt(width = atosRespBits)
val last = Bool()
val data = UInt(width = atosDataBits)
def has_data(dummy: Int = 0) = typ === AtosResponse.rType
def is_last(dummy: Int = 0) = !has_data() || last
def nbits: Int = atosResponseBits
}
class AtosIO(implicit p: Parameters) extends AtosBundle()(p) {
val req = Decoupled(new AtosRequest)
val resp = Decoupled(new AtosResponse).flip
}
class AtosRequestEncoder(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val ar = Decoupled(new NastiReadAddressChannel).flip
val aw = Decoupled(new NastiWriteAddressChannel).flip
val w = Decoupled(new NastiWriteDataChannel).flip
val req = Decoupled(new AtosRequest)
}
val writing = Reg(init = Bool(false))
io.ar.ready := !writing && io.req.ready
io.aw.ready := !writing && !io.ar.valid && io.req.ready
io.w.ready := writing && io.req.ready
io.req.valid := Mux(writing, io.w.valid, io.ar.valid || io.aw.valid)
io.req.bits := Mux(writing, AtosRequest(io.w.bits),
Mux(io.ar.valid, AtosRequest(io.ar.bits), AtosRequest(io.aw.bits)))
when (io.aw.fire()) { writing := Bool(true) }
when (io.w.fire() && io.w.bits.last) { writing := Bool(false) }
}
class AtosResponseDecoder(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val resp = Decoupled(new AtosResponse).flip
val b = Decoupled(new NastiWriteResponseChannel)
val r = Decoupled(new NastiReadDataChannel)
}
val is_b = io.resp.bits.typ === AtosResponse.bType
val is_r = io.resp.bits.typ === AtosResponse.rType
io.b.valid := io.resp.valid && is_b
io.b.bits := NastiWriteResponseChannel(
id = io.resp.bits.id,
resp = io.resp.bits.resp)
io.r.valid := io.resp.valid && is_r
io.r.bits := NastiReadDataChannel(
id = io.resp.bits.id,
data = io.resp.bits.data,
last = io.resp.bits.last,
resp = io.resp.bits.resp)
io.resp.ready := (is_b && io.b.ready) || (is_r && io.r.ready)
}
class AtosClientConverter(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val nasti = (new NastiIO).flip
val atos = new AtosIO
}
val req_enc = Module(new AtosRequestEncoder)
req_enc.io.ar <> io.nasti.ar
req_enc.io.aw <> io.nasti.aw
req_enc.io.w <> io.nasti.w
io.atos.req <> req_enc.io.req
val resp_dec = Module(new AtosResponseDecoder)
resp_dec.io.resp <> io.atos.resp
io.nasti.b <> resp_dec.io.b
io.nasti.r <> resp_dec.io.r
}
class AtosRequestDecoder(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val req = Decoupled(new AtosRequest).flip
val ar = Decoupled(new NastiReadAddressChannel)
val aw = Decoupled(new NastiWriteAddressChannel)
val w = Decoupled(new NastiWriteDataChannel)
}
val is_ar = io.req.bits.typ === AtosRequest.arType
val is_aw = io.req.bits.typ === AtosRequest.awType
val is_w = io.req.bits.typ === AtosRequest.wType
io.ar.valid := io.req.valid && is_ar
io.ar.bits := NastiReadAddressChannel(
id = io.req.bits.id(),
addr = io.req.bits.addr(),
size = io.req.bits.size(),
len = io.req.bits.len(),
burst = io.req.bits.burst())
io.aw.valid := io.req.valid && is_aw
io.aw.bits := NastiWriteAddressChannel(
id = io.req.bits.id(),
addr = io.req.bits.addr(),
size = io.req.bits.size(),
len = io.req.bits.len(),
burst = io.req.bits.burst())
io.w.valid := io.req.valid && is_w
io.w.bits := NastiWriteDataChannel(
id = io.req.bits.id(),
data = io.req.bits.data(),
strb = Some(io.req.bits.strb()),
last = io.req.bits.last())
io.req.ready := (io.ar.ready && is_ar) ||
(io.aw.ready && is_aw) ||
(io.w.ready && is_w)
}
class AtosResponseEncoder(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val b = Decoupled(new NastiWriteResponseChannel).flip
val r = Decoupled(new NastiReadDataChannel).flip
val resp = Decoupled(new AtosResponse)
}
val locked = Reg(init = Bool(false))
io.resp.valid := (io.b.valid && !locked) || io.r.valid
io.resp.bits := Mux(io.r.valid,
AtosResponse(io.r.bits), AtosResponse(io.b.bits))
io.b.ready := !locked && !io.r.valid && io.resp.ready
io.r.ready := io.resp.ready
when (io.r.fire() && !io.r.bits.last) { locked := Bool(true) }
when (io.r.fire() && io.r.bits.last) { locked := Bool(false) }
}
class AtosManagerConverter(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val atos = (new AtosIO).flip
val nasti = new NastiIO
}
val req_dec = Module(new AtosRequestDecoder)
val resp_enc = Module(new AtosResponseEncoder)
req_dec.io.req <> io.atos.req
io.atos.resp <> resp_enc.io.resp
io.nasti.ar <> req_dec.io.ar
io.nasti.aw <> req_dec.io.aw
io.nasti.w <> req_dec.io.w
resp_enc.io.b <> io.nasti.b
resp_enc.io.r <> io.nasti.r
}
class AtosSerializedIO(w: Int)(implicit p: Parameters) extends ParameterizedBundle()(p) {
val req = Decoupled(Bits(width = w))
val resp = Decoupled(Bits(width = w)).flip
val clk = Bool(OUTPUT)
val clk_edge = Bool(OUTPUT)
override def cloneType = new AtosSerializedIO(w)(p).asInstanceOf[this.type]
}
class AtosSerdes(w: Int)(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val wide = (new AtosIO).flip
val narrow = new AtosSerializedIO(w)
}
val ser = Module(new Serializer(w, new AtosRequest))
ser.io.in <> io.wide.req
io.narrow.req <> ser.io.out
val des = Module(new Deserializer(w, new AtosResponse))
des.io.in <> io.narrow.resp
io.wide.resp <> des.io.out
}
class AtosDesser(w: Int)(implicit p: Parameters) extends AtosModule()(p) {
val io = new Bundle {
val narrow = new AtosSerializedIO(w).flip
val wide = new AtosIO
}
val des = Module(new Deserializer(w, new AtosRequest))
des.io.in <> io.narrow.req
io.wide.req <> des.io.out
val ser = Module(new Serializer(w, new AtosResponse))
ser.io.in <> io.wide.resp
io.narrow.resp <> ser.io.out
}

View File

@ -0,0 +1,150 @@
package junctions
import Chisel._
class Crossing[T <: Data](gen: T, enq_sync: Boolean, deq_sync: Boolean) extends Bundle {
val enq = Decoupled(gen).flip()
val deq = Decoupled(gen)
val enq_clock = if (enq_sync) Some(Clock(INPUT)) else None
val deq_clock = if (deq_sync) Some(Clock(INPUT)) else None
val enq_reset = if (enq_sync) Some(Bool(INPUT)) else None
val deq_reset = if (deq_sync) Some(Bool(INPUT)) else None
}
// Output is 1 for one cycle after any edge of 'in'
object AsyncHandshakePulse {
def apply(in: Bool, sync: Int): Bool = {
val syncv = RegInit(Vec.fill(sync+1){Bool(false)})
syncv.last := in
(syncv.init zip syncv.tail).foreach { case (sink, source) => sink := source }
syncv(0) =/= syncv(1)
}
}
class AsyncHandshakeSource[T <: Data](gen: T, sync: Int, clock: Clock, reset: Bool)
extends Module(_clock = clock, _reset = reset) {
val io = new Bundle {
// These come from the source clock domain
val enq = Decoupled(gen).flip()
// These cross to the sink clock domain
val bits = gen.cloneType.asOutput
val push = Bool(OUTPUT)
val pop = Bool(INPUT)
}
val ready = RegInit(Bool(true))
val bits = Reg(gen)
val push = RegInit(Bool(false))
io.enq.ready := ready
io.bits := bits
io.push := push
val pop = AsyncHandshakePulse(io.pop, sync)
assert (!pop || !ready)
when (pop) {
ready := Bool(true)
}
when (io.enq.fire()) {
ready := Bool(false)
bits := io.enq.bits
push := !push
}
}
class AsyncHandshakeSink[T <: Data](gen: T, sync: Int, clock: Clock, reset: Bool)
extends Module(_clock = clock, _reset = reset) {
val io = new Bundle {
// These cross to the source clock domain
val bits = gen.cloneType.asInput
val push = Bool(INPUT)
val pop = Bool(OUTPUT)
// These go to the sink clock domain
val deq = Decoupled(gen)
}
val valid = RegInit(Bool(false))
val bits = Reg(gen)
val pop = RegInit(Bool(false))
io.deq.valid := valid
io.deq.bits := bits
io.pop := pop
val push = AsyncHandshakePulse(io.push, sync)
assert (!push || !valid)
when (push) {
valid := Bool(true)
bits := io.bits
}
when (io.deq.fire()) {
valid := Bool(false)
pop := !pop
}
}
class AsyncHandshake[T <: Data](gen: T, sync: Int = 2) extends Module {
val io = new Crossing(gen, true, true)
require (sync >= 2)
val source = Module(new AsyncHandshakeSource(gen, sync, io.enq_clock.get, io.enq_reset.get))
val sink = Module(new AsyncHandshakeSink (gen, sync, io.deq_clock.get, io.deq_reset.get))
source.io.enq <> io.enq
io.deq <> sink.io.deq
sink.io.bits := source.io.bits
sink.io.push := source.io.push
source.io.pop := sink.io.pop
}
class AsyncDecoupledTo[T <: Data](gen: T, depth: Int = 0, sync: Int = 2) extends Module {
val io = new Crossing(gen, false, true)
// !!! if depth == 0 { use Handshake } else { use AsyncFIFO }
val crossing = Module(new AsyncHandshake(gen, sync)).io
crossing.enq_clock.get := clock
crossing.enq_reset.get := reset
crossing.enq <> io.enq
crossing.deq_clock.get := io.deq_clock.get
crossing.deq_reset.get := io.deq_reset.get
io.deq <> crossing.deq
}
object AsyncDecoupledTo {
// source is in our clock domain, output is in the 'to' clock domain
def apply[T <: Data](to_clock: Clock, to_reset: Bool, source: DecoupledIO[T], depth: Int = 0, sync: Int = 2): DecoupledIO[T] = {
val to = Module(new AsyncDecoupledTo(source.bits, depth, sync))
to.io.deq_clock.get := to_clock
to.io.deq_reset.get := to_reset
to.io.enq <> source
to.io.deq
}
}
class AsyncDecoupledFrom[T <: Data](gen: T, depth: Int = 0, sync: Int = 2) extends Module {
val io = new Crossing(gen, true, false)
// !!! if depth == 0 { use Handshake } else { use AsyncFIFO }
val crossing = Module(new AsyncHandshake(gen, sync)).io
crossing.enq_clock.get := io.enq_clock.get
crossing.enq_reset.get := io.enq_reset.get
crossing.enq <> io.enq
crossing.deq_clock.get := clock
crossing.deq_reset.get := reset
io.deq <> crossing.deq
}
object AsyncDecoupledFrom {
// source is in the 'from' clock domain, output is in our clock domain
def apply[T <: Data](from_clock: Clock, from_reset: Bool, source: DecoupledIO[T], depth: Int = 0, sync: Int = 2): DecoupledIO[T] = {
val from = Module(new AsyncDecoupledFrom(source.bits, depth, sync))
from.io.enq_clock.get := from_clock
from.io.enq_reset.get := from_reset
from.io.enq <> source
from.io.deq
}
}

View File

@ -0,0 +1,549 @@
package junctions
import Chisel._
import cde.{Parameters, Field}
object HastiConstants
{
// Values for htrans
val SZ_HTRANS = 2
val HTRANS_IDLE = UInt(0, SZ_HTRANS) // No transfer requested, not in a burst
val HTRANS_BUSY = UInt(1, SZ_HTRANS) // No transfer requested, in a burst
val HTRANS_NONSEQ = UInt(2, SZ_HTRANS) // First (potentially only) request in a burst
val HTRANS_SEQ = UInt(3, SZ_HTRANS) // Following requests in a burst
// Values for hburst
val SZ_HBURST = 3
val HBURST_SINGLE = UInt(0, SZ_HBURST) // Single access (no burst)
val HBURST_INCR = UInt(1, SZ_HBURST) // Incrementing burst of arbitrary length, not crossing 1KB
val HBURST_WRAP4 = UInt(2, SZ_HBURST) // 4-beat wrapping burst
val HBURST_INCR4 = UInt(3, SZ_HBURST) // 4-beat incrementing burst
val HBURST_WRAP8 = UInt(4, SZ_HBURST) // 8-beat wrapping burst
val HBURST_INCR8 = UInt(5, SZ_HBURST) // 8-beat incrementing burst
val HBURST_WRAP16 = UInt(6, SZ_HBURST) // 16-beat wrapping burst
val HBURST_INCR16 = UInt(7, SZ_HBURST) // 16-beat incrementing burst
// Values for hresp
val SZ_HRESP = 1
val HRESP_OKAY = UInt(0, SZ_HRESP)
val HRESP_ERROR = UInt(1, SZ_HRESP)
// Values for hsize are identical to TileLink MT_SZ
// ie: 8*2^SZ_HSIZE bit transfers
val SZ_HSIZE = 3
// Values for hprot (a bitmask)
val SZ_HPROT = 4
def HPROT_DATA = UInt("b0001") // Data access or Opcode fetch
def HPROT_PRIVILEGED = UInt("b0010") // Privileged or User access
def HPROT_BUFFERABLE = UInt("b0100") // Bufferable or non-bufferable
def HPROT_CACHEABLE = UInt("b1000") // Cacheable or non-cacheable
def dgate(valid: Bool, b: UInt) = Fill(b.getWidth, valid) & b
}
import HastiConstants._
case class HastiParameters(dataBits: Int, addrBits: Int)
case object HastiId extends Field[String]
case class HastiKey(id: String) extends Field[HastiParameters]
trait HasHastiParameters {
implicit val p: Parameters
val hastiParams = p(HastiKey(p(HastiId)))
val hastiAddrBits = hastiParams.addrBits
val hastiDataBits = hastiParams.dataBits
val hastiDataBytes = hastiDataBits/8
val hastiAlignment = log2Ceil(hastiDataBytes)
}
abstract class HastiModule(implicit val p: Parameters) extends Module
with HasHastiParameters
abstract class HastiBundle(implicit val p: Parameters) extends ParameterizedBundle()(p)
with HasHastiParameters
class HastiMasterIO(implicit p: Parameters) extends HastiBundle()(p) {
val htrans = UInt(OUTPUT, SZ_HTRANS)
val hmastlock = Bool(OUTPUT)
val haddr = UInt(OUTPUT, hastiAddrBits)
val hwrite = Bool(OUTPUT)
val hburst = UInt(OUTPUT, SZ_HBURST)
val hsize = UInt(OUTPUT, SZ_HSIZE)
val hprot = UInt(OUTPUT, SZ_HPROT)
val hwdata = Bits(OUTPUT, hastiDataBits)
val hrdata = Bits(INPUT, hastiDataBits)
val hready = Bool(INPUT)
val hresp = UInt(INPUT, SZ_HRESP)
def isNSeq(dummy:Int=0) = htrans === HTRANS_NONSEQ // SEQ does not start a NEW request
def isHold(dummy:Int=0) = htrans === HTRANS_BUSY || htrans === HTRANS_SEQ
def isIdle(dummy:Int=0) = htrans === HTRANS_IDLE || htrans === HTRANS_BUSY
}
class HastiSlaveIO(implicit p: Parameters) extends HastiBundle()(p) {
val htrans = UInt(INPUT, SZ_HTRANS)
val hmastlock = Bool(INPUT)
val haddr = UInt(INPUT, hastiAddrBits)
val hwrite = Bool(INPUT)
val hburst = UInt(INPUT, SZ_HBURST)
val hsize = UInt(INPUT, SZ_HSIZE)
val hprot = UInt(INPUT, SZ_HPROT)
val hwdata = Bits(INPUT, hastiDataBits)
val hrdata = Bits(OUTPUT, hastiDataBits)
val hsel = Bool(INPUT)
val hready = Bool(OUTPUT)
val hresp = UInt(OUTPUT, SZ_HRESP)
}
/* A diverted master is told hready when his address phase goes nowhere.
* In this case, we buffer his address phase request and replay it later.
* NOTE: this must optimize to nothing when divert is constantly false.
*/
class MasterDiversion(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val in = (new HastiMasterIO).flip
val out = (new HastiMasterIO)
val divert = Bool(INPUT)
}
val full = Reg(init = Bool(false))
val buffer = Reg(new HastiMasterIO)
when (io.out.hready) {
full := Bool(false)
}
when (io.divert) {
full := Bool(true)
buffer := io.in
}
// If the master is diverted, he must also have been told hready
assert (!io.divert || io.in.hready,
"Diverted but not ready");
// Replay the request we diverted
io.out.htrans := Mux(full, buffer.htrans, io.in.htrans)
io.out.hmastlock := Mux(full, buffer.hmastlock, io.in.hmastlock)
io.out.haddr := Mux(full, buffer.haddr, io.in.haddr)
io.out.hwrite := Mux(full, buffer.hwrite, io.in.hwrite)
io.out.hburst := Mux(full, buffer.hburst, io.in.hburst)
io.out.hsize := Mux(full, buffer.hsize, io.in.hsize)
io.out.hprot := Mux(full, buffer.hprot, io.in.hprot)
io.out.hwdata := Mux(full, buffer.hwdata, io.in.hwdata)
// Pass slave response back
io.in.hrdata := io.out.hrdata
io.in.hresp := io.out.hresp
io.in.hready := io.out.hready && !full // Block master while we steal his address phase
}
/* Masters with lower index have priority over higher index masters.
* However, a lower priority master will retain control of a slave when EITHER:
* 1. a burst is in progress (switching slaves mid-burst violates AHB-lite at slave)
* 2. a transfer was waited (the standard forbids changing requests in this case)
*
* If a master raises hmastlock, it will be waited until no other master has inflight
* requests; then, it acquires exclusive control of the crossbar until hmastlock is low.
*
* To implement an AHB-lite crossbar, it is important to realize that requests and
* responses are coupled. Unlike modern bus protocols where the response data has flow
* control independent of the request data, in AHB-lite, both flow at the same time at
* the sole discretion of the slave via the hready signal. The address and data are
* delivered on two back-to-back cycles, the so-called address and data phases.
*
* Masters can only be connected to a single slave at a time. If a master had two different
* slave connections on the address and data phases, there would be two independent hready
* signals. An AHB-lite slave can assume that data flows when it asserts hready. If the data
* slave deasserts hready while the address slave asserts hready, the master is put in the
* impossible position of being in data phase on two slaves at once. For this reason, when
* a master issues back-to-back accesses to distinct slaves, we inject a pipeline bubble
* between the two requests to limit the master to just a single slave at a time.
*
* Conversely, a slave CAN have two masters attached to it. This is unproblematic, because
* the only signal which governs data flow is hready. Thus, both masters can be stalled
* safely by the single slave.
*/
class HastiXbar(nMasters: Int, addressMap: Seq[UInt=>Bool])(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val masters = Vec(nMasters, new HastiMasterIO).flip
val slaves = Vec(addressMap.size, new HastiSlaveIO).flip
}
val nSlaves = addressMap.size
// Setup diversions infront of each master
val diversions = Seq.tabulate(nMasters) { m => Module(new MasterDiversion) }
(io.masters zip diversions) foreach { case (m, d) => d.io.in <> m }
// Handy short-hand
val masters = diversions map (_.io.out)
val slaves = io.slaves
// Lock status of the crossbar
val lockedM = Reg(init = Vec.fill(nMasters)(Bool(false)))
val isLocked = lockedM.reduce(_ || _)
// This matrix governs the master-slave connections in the address phase
// It is indexed by addressPhaseGrantSM(slave)(master)
// It is guaranteed to have at most one 'true' per column and per row
val addressPhaseGrantSM = Wire(Vec(nSlaves, Vec(nMasters, Bool())))
// This matrix governs the master-slave connections in the data phase
// It is guaranteed to have at most one 'true' per column and per row
val dataPhaseGrantSM = Reg (init = Vec.fill(nSlaves)(Vec.fill(nMasters)(Bool(false))))
// This matrix is the union of the address and data phases.
// It is transposed with respect to the two previous matrices.
// It is guaranteed to contain at most one 'true' per master row.
// However, two 'true's per slave column are permitted.
val unionGrantMS = Vec.tabulate(nMasters) { m => Vec.tabulate(nSlaves) { s =>
addressPhaseGrantSM(s)(m) || dataPhaseGrantSM(s)(m) } }
// Confirm the guarantees made above
def justOnce(v: Vec[Bool]) = v.fold(Bool(false)) { case (p, v) =>
assert (!p || !v)
p || v
}
addressPhaseGrantSM foreach { s => justOnce(s) }
unionGrantMS foreach { s => justOnce(s) }
// Data phase follows address phase whenever the slave is ready
(slaves zip (dataPhaseGrantSM zip addressPhaseGrantSM)) foreach { case (s, (d, a)) =>
when (s.hready) { d := a }
}
// Record the grant state from the previous cycle; needed in case we hold access
val priorAddressPhaseGrantSM = RegNext(addressPhaseGrantSM)
// If a master says BUSY or SEQ, it is in the middle of a burst.
// In this case, it MUST stay attached to the same slave as before.
// Otherwise, it would violate the AHB-lite specification as seen by
// the slave, which is guaranteed a complete burst of the promised length.
// One case where this matters is preventing preemption of low-prio masters.
// NOTE: this exposes a slave to bad addresses when a master is buggy
val holdBurstM = Vec(masters map { _.isHold() })
// Transform the burst hold requirement from master indexing to slave indexing
// We use the previous cycle's binding because the master continues the prior burst
val holdBurstS = Vec(priorAddressPhaseGrantSM map { m => Mux1H(m, holdBurstM) })
// If a slave says !hready to a request, it must retain the same master next cycle.
// The AHB-lite specification requires that a waited transfer remain unchanged.
// If we preempted a waited master, the new master's request could potentially differ.
val holdBusyS = RegNext(Vec(slaves map { s => !s.hready && s.hsel }))
// Combine the above two grounds to determine if the slave retains its prior master
val holdS = Vec((holdBurstS zip holdBusyS) map ({ case (a,b) => a||b }))
// Determine which master addresses match which slaves
val matchMS = Vec(masters map { m => Vec(addressMap map { afn => afn(m.haddr) }) })
// Detect requests to nowhere; we need to allow progress in this case
val nowhereM = Vec(matchMS map { s => !s.reduce(_ || _) })
// Detect if we need to inject a pipeline bubble between the master requests.
// Divert masters already granted a data phase different from next request.
// NOTE: if only one slave, matchMS is always true => bubble always false
// => the diversion registers are optimized away as they are unread
// NOTE: bubble => dataPhase => have an hready signal
val bubbleM =
Vec.tabulate(nMasters) { m =>
Vec.tabulate(nSlaves) { s => dataPhaseGrantSM(s)(m) && !matchMS(m)(s) }
.reduce(_ || _) }
// Block any request that requires bus ownership or conflicts with isLocked
val blockedM =
Vec((lockedM zip masters) map { case(l, m) => !l && (isLocked || m.hmastlock) })
// Requested access to slaves from masters (pre-arbitration)
// NOTE: isNSeq does NOT include SEQ; thus, masters who are midburst do not
// request access to a new slave. They stay tied to the old and do not get two.
// NOTE: if a master was waited, it must repeat the same request as last cycle;
// thus, it will request the same slave and not end up with two (unless buggy).
val NSeq = masters.map(_.isNSeq())
val requestSM = Vec.tabulate(nSlaves) { s => Vec.tabulate(nMasters) { m =>
matchMS(m)(s) && NSeq(m) && !bubbleM(m) && !blockedM(m) } }
// Select at most one master request per slave (lowest index = highest priority)
val selectedRequestSM = Vec(requestSM map { m => Vec(PriorityEncoderOH(m)) })
// Calculate new crossbar interconnect state
addressPhaseGrantSM := Vec((holdS zip (priorAddressPhaseGrantSM zip selectedRequestSM))
map { case (h, (p, r)) => Mux(h, p, r) })
for (m <- 0 until nMasters) {
// If the master is connected to a slave, the slave determines hready.
// However, if no slave is connected, for progress report ready anyway, if:
// bad address (swallow request) OR idle (permit stupid masters to move FSM)
val autoready = nowhereM(m) || masters(m).isIdle()
val hready = Mux1H(unionGrantMS(m), slaves.map(_.hready ^ autoready)) ^ autoready
masters(m).hready := hready
// If we diverted a master, we need to absorb his address phase to replay later
diversions(m).io.divert := (bubbleM(m) || blockedM(m)) && NSeq(m) && hready
}
// Master muxes (address and data phase are the same)
(masters zip unionGrantMS) foreach { case (m, g) => {
m.hrdata := Mux1H(g, slaves.map(_.hrdata))
m.hresp := Mux1H(g, slaves.map(_.hresp))
} }
// Slave address phase muxes
(slaves zip addressPhaseGrantSM) foreach { case (s, g) => {
s.htrans := Mux1H(g, masters.map(_.htrans))
s.haddr := Mux1H(g, masters.map(_.haddr))
s.hmastlock := isLocked
s.hwrite := Mux1H(g, masters.map(_.hwrite))
s.hsize := Mux1H(g, masters.map(_.hsize))
s.hburst := Mux1H(g, masters.map(_.hburst))
s.hprot := Mux1H(g, masters.map(_.hprot))
s.hsel := g.reduce(_ || _)
} }
// Slave data phase muxes
(slaves zip dataPhaseGrantSM) foreach { case (s, g) => {
s.hwdata := Mux1H(g, masters.map(_.hwdata))
} }
// When no master-slave connections are active, a master can take-over the bus
val canLock = !addressPhaseGrantSM.map({ v => v.reduce(_ || _) }).reduce(_ || _)
// Lowest index highest priority for lock arbitration
val reqLock = masters.map(_.hmastlock)
val winLock = PriorityEncoderOH(reqLock)
// Lock arbitration
when (isLocked) {
lockedM := (lockedM zip reqLock) map { case (a,b) => a && b }
} .elsewhen (canLock) {
lockedM := winLock
}
}
class HastiBus(amap: Seq[UInt=>Bool])(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val master = new HastiMasterIO().flip
val slaves = Vec(amap.size, new HastiSlaveIO).flip
}
val bar = Module(new HastiXbar(1, amap))
bar.io.masters(0) <> io.master
bar.io.slaves <> io.slaves
}
class HastiSlaveMux(n: Int)(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val ins = Vec(n, new HastiSlaveIO)
val out = new HastiSlaveIO().flip
}
val amap = Seq({ (_:UInt) => Bool(true)})
val bar = Module(new HastiXbar(n, amap))
io.ins <> bar.io.masters
io.out <> bar.io.slaves(0)
}
class HastiSlaveToMaster(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val in = new HastiSlaveIO
val out = new HastiMasterIO
}
io.out.htrans := Mux(io.in.hsel, io.in.htrans, HTRANS_IDLE)
io.out.hmastlock := io.in.hmastlock
io.out.haddr := io.in.haddr
io.out.hwrite := io.in.hwrite
io.out.hburst := io.in.hburst
io.out.hsize := io.in.hsize
io.out.hprot := io.in.hprot
io.out.hwdata := io.in.hwdata
io.in.hrdata := io.out.hrdata
io.in.hready := io.out.hready
io.in.hresp := io.out.hresp
}
class HastiMasterIONastiIOConverter(implicit p: Parameters) extends HastiModule()(p)
with HasNastiParameters {
val io = new Bundle {
val nasti = new NastiIO().flip
val hasti = new HastiMasterIO
}
require(hastiAddrBits == nastiXAddrBits)
require(hastiDataBits == nastiXDataBits)
val r_queue = Module(new Queue(new NastiReadDataChannel, 2, pipe = true))
val s_idle :: s_read :: s_write :: s_write_resp :: Nil = Enum(Bits(), 4)
val state = Reg(init = s_idle)
val addr = Reg(UInt(width = hastiAddrBits))
val id = Reg(UInt(width = nastiXIdBits))
val size = Reg(UInt(width = nastiXSizeBits))
val len = Reg(UInt(width = nastiXLenBits))
val data = Reg(UInt(width = nastiXDataBits))
val first = Reg(init = Bool(false))
val is_rtrans = (state === s_read) &&
(io.hasti.htrans === HTRANS_SEQ ||
io.hasti.htrans === HTRANS_NONSEQ)
val rvalid = RegEnable(is_rtrans, Bool(false), io.hasti.hready)
io.nasti.aw.ready := (state === s_idle)
io.nasti.ar.ready := (state === s_idle) && !io.nasti.aw.valid
io.nasti.w.ready := (state === s_write) && io.hasti.hready
io.nasti.b.valid := (state === s_write_resp)
io.nasti.b.bits := NastiWriteResponseChannel(id = id)
io.nasti.r <> r_queue.io.deq
r_queue.io.enq.valid := io.hasti.hready && rvalid
r_queue.io.enq.bits := NastiReadDataChannel(
id = id,
data = io.hasti.hrdata,
last = (len === UInt(0)))
assert(!r_queue.io.enq.valid || r_queue.io.enq.ready,
"NASTI -> HASTI converter queue overflow")
// How many read requests have we not delivered a response for yet?
val pending_count = r_queue.io.count + rvalid
io.hasti.haddr := addr
io.hasti.hsize := size
io.hasti.hwrite := (state === s_write)
io.hasti.hburst := HBURST_INCR
io.hasti.hprot := UInt(0)
io.hasti.hwdata := data
io.hasti.hmastlock := Bool(false)
io.hasti.htrans := MuxLookup(state, HTRANS_IDLE, Seq(
s_write -> Mux(io.nasti.w.valid,
Mux(first, HTRANS_NONSEQ, HTRANS_SEQ),
Mux(first, HTRANS_IDLE, HTRANS_BUSY)),
s_read -> MuxCase(HTRANS_BUSY, Seq(
first -> HTRANS_NONSEQ,
(pending_count <= UInt(1)) -> HTRANS_SEQ))))
when (io.nasti.aw.fire()) {
first := Bool(true)
addr := io.nasti.aw.bits.addr
id := io.nasti.aw.bits.id
size := io.nasti.aw.bits.size
state := s_write
}
when (io.nasti.ar.fire()) {
first := Bool(true)
addr := io.nasti.ar.bits.addr
id := io.nasti.ar.bits.id
size := io.nasti.ar.bits.size
len := io.nasti.ar.bits.len
state := s_read
}
when (io.nasti.w.fire()) {
first := Bool(false)
addr := addr + (UInt(1) << size)
data := io.nasti.w.bits.data
when (io.nasti.w.bits.last) { state := s_write_resp }
}
when (io.nasti.b.fire()) { state := s_idle }
when (is_rtrans && io.hasti.hready) {
first := Bool(false)
addr := addr + (UInt(1) << size)
len := len - UInt(1)
when (len === UInt(0)) { state := s_idle }
}
}
class HastiTestSRAM(depth: Int)(implicit p: Parameters) extends HastiModule()(p) {
val io = new HastiSlaveIO
// This is a test SRAM with random delays
val ready = LFSR16(Bool(true))(0) // Bool(true)
// Calculate the bitmask of which bytes are being accessed
val mask_decode = Vec.tabulate(hastiAlignment+1) (UInt(_) <= io.hsize)
val mask_wide = Vec.tabulate(hastiDataBytes) { i => mask_decode(log2Up(i+1)) }
val mask_shift = if (hastiAlignment == 0) UInt(1) else
mask_wide.asUInt() << io.haddr(hastiAlignment-1,0)
// The request had better have been aligned! (AHB-lite requires this)
if (hastiAlignment >= 1) {
assert (io.htrans === HTRANS_IDLE || io.htrans === HTRANS_BUSY ||
(io.haddr & mask_decode.asUInt()(hastiAlignment,1)) === UInt(0),
"HASTI request not aligned")
}
// The mask and address during the address phase
val a_request = io.hsel && (io.htrans === HTRANS_NONSEQ || io.htrans === HTRANS_SEQ)
val a_mask = Wire(UInt(width = hastiDataBytes))
val a_address = io.haddr(depth-1, hastiAlignment)
val a_write = io.hwrite
// for backwards compatibility with chisel2, we needed a static width in definition
a_mask := mask_shift(hastiDataBytes-1, 0)
// The data phase signals
val d_read = RegEnable(a_request && !a_write, Bool(false), ready)
val d_mask = RegEnable(a_mask, ready && a_request)
val d_wdata = Vec.tabulate(hastiDataBytes) { i => io.hwdata(8*(i+1)-1, 8*i) }
// AHB writes must occur during the data phase; this poses a structural
// hazard with reads which must occur during the address phase. To solve
// this problem, we delay the writes until there is a free cycle.
//
// The idea is to record the address information from address phase and
// then as soon as possible flush the pending write. This cannot be done
// on a cycle when there is an address phase read, but on any other cycle
// the write will execute. In the case of reads following a write, the
// result must bypass data from the pending write into the read if they
// happen to have matching address.
// Remove this once HoldUnless is in chisel3
def holdUnless[T <: Data](in : T, enable: Bool): T = Mux(!enable, RegEnable(in, enable), in)
// Pending write?
val p_valid = RegInit(Bool(false))
val p_address = Reg(a_address)
val p_mask = Reg(a_mask)
val p_latch_d = RegNext(ready && a_request && a_write, Bool(false))
val p_wdata = holdUnless(d_wdata, p_latch_d)
// Use single-ported memory with byte-write enable
val mem = SeqMem(1 << (depth-hastiAlignment), Vec(hastiDataBytes, Bits(width = 8)))
// Decide is the SRAM port is used for reading or (potentially) writing
val read = ready && a_request && !a_write
// In case we are stalled, we need to hold the read data
val d_rdata = holdUnless(mem.read(a_address, read), RegNext(read))
// Whenever the port is not needed for reading, execute pending writes
when (!read) {
when (p_valid) { mem.write(p_address, p_wdata, p_mask.toBools) }
p_valid := Bool(false)
}
// Record the request for later?
when (ready && a_request && a_write) {
p_valid := Bool(true)
p_address := a_address
p_mask := a_mask
}
// Does the read need to be muxed with the previous write?
val a_bypass = a_address === p_address && p_valid
val d_bypass = RegEnable(a_bypass, ready && a_request)
// Mux in data from the pending write
val muxdata = Vec((p_mask.toBools zip (p_wdata zip d_rdata))
map { case (m, (p, r)) => Mux(d_bypass && m, p, r) })
// Wipe out any data the master should not see (for testing)
val outdata = Vec((d_mask.toBools zip muxdata)
map { case (m, p) => Mux(d_read && ready && m, p, Bits(0)) })
// Finally, the outputs
io.hrdata := outdata.asUInt
io.hready := ready
io.hresp := HRESP_OKAY
}

View File

@ -0,0 +1,317 @@
// See LICENSE for license details.
package junctions
import Chisel._
import scala.math._
import cde.{Parameters, Field}
case object MIFAddrBits extends Field[Int]
case object MIFDataBits extends Field[Int]
case object MIFTagBits extends Field[Int]
case object MIFDataBeats extends Field[Int]
trait HasMIFParameters {
implicit val p: Parameters
val mifTagBits = p(MIFTagBits)
val mifAddrBits = p(MIFAddrBits)
val mifDataBits = p(MIFDataBits)
val mifDataBeats = p(MIFDataBeats)
}
abstract class MIFModule(implicit val p: Parameters) extends Module with HasMIFParameters
abstract class MIFBundle(implicit val p: Parameters) extends ParameterizedBundle()(p)
with HasMIFParameters
trait HasMemData extends HasMIFParameters {
val data = Bits(width = mifDataBits)
}
trait HasMemAddr extends HasMIFParameters {
val addr = UInt(width = mifAddrBits)
}
trait HasMemTag extends HasMIFParameters {
val tag = UInt(width = mifTagBits)
}
class MemReqCmd(implicit p: Parameters) extends MIFBundle()(p) with HasMemAddr with HasMemTag {
val rw = Bool()
}
class MemTag(implicit p: Parameters) extends MIFBundle()(p) with HasMemTag
class MemData(implicit p: Parameters) extends MIFBundle()(p) with HasMemData
class MemResp(implicit p: Parameters) extends MIFBundle()(p) with HasMemData with HasMemTag
class MemIO(implicit p: Parameters) extends ParameterizedBundle()(p) {
val req_cmd = Decoupled(new MemReqCmd)
val req_data = Decoupled(new MemData)
val resp = Decoupled(new MemResp).flip
}
class MemPipeIO(implicit p: Parameters) extends ParameterizedBundle()(p) {
val req_cmd = Decoupled(new MemReqCmd)
val req_data = Decoupled(new MemData)
val resp = Valid(new MemResp).flip
}
class MemSerializedIO(w: Int)(implicit p: Parameters) extends ParameterizedBundle()(p) {
val req = Decoupled(Bits(width = w))
val resp = Valid(Bits(width = w)).flip
override def cloneType = new MemSerializedIO(w)(p).asInstanceOf[this.type]
}
class MemSerdes(w: Int)(implicit p: Parameters) extends MIFModule
{
val io = new Bundle {
val wide = new MemIO().flip
val narrow = new MemSerializedIO(w)
}
val abits = io.wide.req_cmd.bits.asUInt.getWidth
val dbits = io.wide.req_data.bits.asUInt.getWidth
val rbits = io.wide.resp.bits.getWidth
val out_buf = Reg(Bits())
val in_buf = Reg(Bits())
val s_idle :: s_read_addr :: s_write_addr :: s_write_idle :: s_write_data :: Nil = Enum(UInt(), 5)
val state = Reg(init=s_idle)
val send_cnt = Reg(init=UInt(0, log2Up((max(abits, dbits)+w-1)/w)))
val data_send_cnt = Reg(init=UInt(0, log2Up(mifDataBeats)))
val adone = io.narrow.req.ready && send_cnt === UInt((abits-1)/w)
val ddone = io.narrow.req.ready && send_cnt === UInt((dbits-1)/w)
when (io.narrow.req.valid && io.narrow.req.ready) {
send_cnt := send_cnt + UInt(1)
out_buf := out_buf >> UInt(w)
}
when (io.wide.req_cmd.valid && io.wide.req_cmd.ready) {
out_buf := io.wide.req_cmd.bits.asUInt
}
when (io.wide.req_data.valid && io.wide.req_data.ready) {
out_buf := io.wide.req_data.bits.asUInt
}
io.wide.req_cmd.ready := state === s_idle
io.wide.req_data.ready := state === s_write_idle
io.narrow.req.valid := state === s_read_addr || state === s_write_addr || state === s_write_data
io.narrow.req.bits := out_buf
when (state === s_idle && io.wide.req_cmd.valid) {
state := Mux(io.wide.req_cmd.bits.rw, s_write_addr, s_read_addr)
}
when (state === s_read_addr && adone) {
state := s_idle
send_cnt := UInt(0)
}
when (state === s_write_addr && adone) {
state := s_write_idle
send_cnt := UInt(0)
}
when (state === s_write_idle && io.wide.req_data.valid) {
state := s_write_data
}
when (state === s_write_data && ddone) {
data_send_cnt := data_send_cnt + UInt(1)
state := Mux(data_send_cnt === UInt(mifDataBeats-1), s_idle, s_write_idle)
send_cnt := UInt(0)
}
val recv_cnt = Reg(init=UInt(0, log2Up((rbits+w-1)/w)))
val data_recv_cnt = Reg(init=UInt(0, log2Up(mifDataBeats)))
val resp_val = Reg(init=Bool(false))
resp_val := Bool(false)
when (io.narrow.resp.valid) {
recv_cnt := recv_cnt + UInt(1)
when (recv_cnt === UInt((rbits-1)/w)) {
recv_cnt := UInt(0)
data_recv_cnt := data_recv_cnt + UInt(1)
resp_val := Bool(true)
}
in_buf := Cat(io.narrow.resp.bits, in_buf((rbits+w-1)/w*w-1,w))
}
io.wide.resp.valid := resp_val
io.wide.resp.bits := io.wide.resp.bits.fromBits(in_buf)
}
class MemDesserIO(w: Int)(implicit p: Parameters) extends ParameterizedBundle()(p) {
val narrow = new MemSerializedIO(w).flip
val wide = new MemIO
}
class MemDesser(w: Int)(implicit p: Parameters) extends Module // test rig side
{
val io = new MemDesserIO(w)
val abits = io.wide.req_cmd.bits.asUInt.getWidth
val dbits = io.wide.req_data.bits.asUInt.getWidth
val rbits = io.wide.resp.bits.getWidth
val mifDataBeats = p(MIFDataBeats)
require(dbits >= abits && rbits >= dbits)
val recv_cnt = Reg(init=UInt(0, log2Up((rbits+w-1)/w)))
val data_recv_cnt = Reg(init=UInt(0, log2Up(mifDataBeats)))
val adone = io.narrow.req.valid && recv_cnt === UInt((abits-1)/w)
val ddone = io.narrow.req.valid && recv_cnt === UInt((dbits-1)/w)
val rdone = io.narrow.resp.valid && recv_cnt === UInt((rbits-1)/w)
val s_cmd_recv :: s_cmd :: s_data_recv :: s_data :: s_reply :: Nil = Enum(UInt(), 5)
val state = Reg(init=s_cmd_recv)
val in_buf = Reg(Bits())
when (io.narrow.req.valid && io.narrow.req.ready || io.narrow.resp.valid) {
recv_cnt := recv_cnt + UInt(1)
in_buf := Cat(io.narrow.req.bits, in_buf((rbits+w-1)/w*w-1,w))
}
io.narrow.req.ready := state === s_cmd_recv || state === s_data_recv
when (state === s_cmd_recv && adone) {
state := s_cmd
recv_cnt := UInt(0)
}
when (state === s_cmd && io.wide.req_cmd.ready) {
state := Mux(io.wide.req_cmd.bits.rw, s_data_recv, s_reply)
}
when (state === s_data_recv && ddone) {
state := s_data
recv_cnt := UInt(0)
}
when (state === s_data && io.wide.req_data.ready) {
state := s_data_recv
when (data_recv_cnt === UInt(mifDataBeats-1)) {
state := s_cmd_recv
}
data_recv_cnt := data_recv_cnt + UInt(1)
}
when (rdone) { // state === s_reply
when (data_recv_cnt === UInt(mifDataBeats-1)) {
state := s_cmd_recv
}
recv_cnt := UInt(0)
data_recv_cnt := data_recv_cnt + UInt(1)
}
val req_cmd = in_buf >> UInt(((rbits+w-1)/w - (abits+w-1)/w)*w)
io.wide.req_cmd.valid := state === s_cmd
io.wide.req_cmd.bits := io.wide.req_cmd.bits.fromBits(req_cmd)
io.wide.req_data.valid := state === s_data
io.wide.req_data.bits.data := in_buf >> UInt(((rbits+w-1)/w - (dbits+w-1)/w)*w)
val dataq = Module(new Queue(new MemResp, mifDataBeats))
dataq.io.enq <> io.wide.resp
dataq.io.deq.ready := recv_cnt === UInt((rbits-1)/w)
io.narrow.resp.valid := dataq.io.deq.valid
io.narrow.resp.bits := dataq.io.deq.bits.asUInt >> (recv_cnt * UInt(w))
}
class MemIOArbiter(val arbN: Int)(implicit p: Parameters) extends MIFModule {
val io = new Bundle {
val inner = Vec(arbN, new MemIO).flip
val outer = new MemIO
}
if(arbN > 1) {
val cmd_arb = Module(new RRArbiter(new MemReqCmd, arbN))
val choice_q = Module(new Queue(cmd_arb.io.chosen, 4))
val (data_cnt, data_done) = Counter(io.outer.req_data.fire(), mifDataBeats)
io.inner.map(_.req_cmd).zipWithIndex.zip(cmd_arb.io.in).map{ case ((req, id), arb) => {
arb.valid := req.valid
arb.bits := req.bits
arb.bits.tag := Cat(req.bits.tag, UInt(id))
req.ready := arb.ready
}}
io.outer.req_cmd.bits := cmd_arb.io.out.bits
io.outer.req_cmd.valid := cmd_arb.io.out.valid && choice_q.io.enq.ready
cmd_arb.io.out.ready := io.outer.req_cmd.ready && choice_q.io.enq.ready
choice_q.io.enq.bits := cmd_arb.io.chosen
choice_q.io.enq.valid := cmd_arb.io.out.fire() && cmd_arb.io.out.bits.rw
io.outer.req_data.bits := io.inner(choice_q.io.deq.bits).req_data.bits
io.outer.req_data.valid := io.inner(choice_q.io.deq.bits).req_data.valid && choice_q.io.deq.valid
io.inner.map(_.req_data.ready).zipWithIndex.foreach {
case(r, i) => r := UInt(i) === choice_q.io.deq.bits && choice_q.io.deq.valid
}
choice_q.io.deq.ready := data_done
io.outer.resp.ready := Bool(false)
for (i <- 0 until arbN) {
io.inner(i).resp.valid := Bool(false)
when(io.outer.resp.bits.tag(log2Up(arbN)-1,0) === UInt(i)) {
io.inner(i).resp.valid := io.outer.resp.valid
io.outer.resp.ready := io.inner(i).resp.ready
}
io.inner(i).resp.bits := io.outer.resp.bits
io.inner(i).resp.bits.tag := io.outer.resp.bits.tag >> UInt(log2Up(arbN))
}
} else { io.outer <> io.inner.head }
}
object MemIOMemPipeIOConverter {
def apply(in: MemPipeIO)(implicit p: Parameters): MemIO = {
val out = Wire(new MemIO())
in.resp.valid := out.resp.valid
in.resp.bits := out.resp.bits
out.resp.ready := Bool(true)
out.req_cmd.valid := in.req_cmd.valid
out.req_cmd.bits := in.req_cmd.bits
in.req_cmd.ready := out.req_cmd.ready
out.req_data.valid := in.req_data.valid
out.req_data.bits := in.req_data.bits
in.req_data.ready := out.req_data.ready
out
}
}
class MemPipeIOMemIOConverter(numRequests: Int)(implicit p: Parameters) extends MIFModule {
val io = new Bundle {
val cpu = new MemIO().flip
val mem = new MemPipeIO
}
val numEntries = numRequests * mifDataBeats
val size = log2Down(numEntries) + 1
val inc = Wire(Bool())
val dec = Wire(Bool())
val count = Reg(init=UInt(numEntries, size))
val watermark = count >= UInt(mifDataBeats)
when (inc && !dec) {
count := count + UInt(1)
}
when (!inc && dec) {
count := count - UInt(mifDataBeats)
}
when (inc && dec) {
count := count - UInt(mifDataBeats-1)
}
val cmdq_mask = io.cpu.req_cmd.bits.rw || watermark
io.mem.req_cmd.valid := io.cpu.req_cmd.valid && cmdq_mask
io.cpu.req_cmd.ready := io.mem.req_cmd.ready && cmdq_mask
io.mem.req_cmd.bits := io.cpu.req_cmd.bits
io.mem.req_data <> io.cpu.req_data
// Have separate queues to allow for different mem implementations
val resp_data_q = Module((new HellaQueue(numEntries)) { new MemData })
resp_data_q.io.enq.valid := io.mem.resp.valid
resp_data_q.io.enq.bits.data := io.mem.resp.bits.data
val resp_tag_q = Module((new HellaQueue(numEntries)) { new MemTag })
resp_tag_q.io.enq.valid := io.mem.resp.valid
resp_tag_q.io.enq.bits.tag := io.mem.resp.bits.tag
io.cpu.resp.valid := resp_data_q.io.deq.valid && resp_tag_q.io.deq.valid
io.cpu.resp.bits.data := resp_data_q.io.deq.bits.data
io.cpu.resp.bits.tag := resp_tag_q.io.deq.bits.tag
resp_data_q.io.deq.ready := io.cpu.resp.ready
resp_tag_q.io.deq.ready := io.cpu.resp.ready
inc := resp_data_q.io.deq.fire() && resp_tag_q.io.deq.fire()
dec := io.mem.req_cmd.fire() && !io.mem.req_cmd.bits.rw
}

View File

@ -0,0 +1,737 @@
/// See LICENSE for license details.
package junctions
import Chisel._
import scala.math.max
import scala.collection.mutable.ArraySeq
import cde.{Parameters, Field}
case object NastiKey extends Field[NastiParameters]
case class NastiParameters(dataBits: Int, addrBits: Int, idBits: Int)
trait HasNastiParameters {
implicit val p: Parameters
val nastiExternal = p(NastiKey)
val nastiXDataBits = nastiExternal.dataBits
val nastiWStrobeBits = nastiXDataBits / 8
val nastiXAddrBits = nastiExternal.addrBits
val nastiWIdBits = nastiExternal.idBits
val nastiRIdBits = nastiExternal.idBits
val nastiXIdBits = max(nastiWIdBits, nastiRIdBits)
val nastiXUserBits = 1
val nastiAWUserBits = nastiXUserBits
val nastiWUserBits = nastiXUserBits
val nastiBUserBits = nastiXUserBits
val nastiARUserBits = nastiXUserBits
val nastiRUserBits = nastiXUserBits
val nastiXLenBits = 8
val nastiXSizeBits = 3
val nastiXBurstBits = 2
val nastiXCacheBits = 4
val nastiXProtBits = 3
val nastiXQosBits = 4
val nastiXRegionBits = 4
val nastiXRespBits = 2
def bytesToXSize(bytes: UInt) = MuxLookup(bytes, UInt("b111"), Array(
UInt(1) -> UInt(0),
UInt(2) -> UInt(1),
UInt(4) -> UInt(2),
UInt(8) -> UInt(3),
UInt(16) -> UInt(4),
UInt(32) -> UInt(5),
UInt(64) -> UInt(6),
UInt(128) -> UInt(7)))
}
abstract class NastiModule(implicit val p: Parameters) extends Module
with HasNastiParameters
abstract class NastiBundle(implicit val p: Parameters) extends ParameterizedBundle()(p)
with HasNastiParameters
abstract class NastiChannel(implicit p: Parameters) extends NastiBundle()(p)
abstract class NastiMasterToSlaveChannel(implicit p: Parameters) extends NastiChannel()(p)
abstract class NastiSlaveToMasterChannel(implicit p: Parameters) extends NastiChannel()(p)
trait HasNastiMetadata extends HasNastiParameters {
val addr = UInt(width = nastiXAddrBits)
val len = UInt(width = nastiXLenBits)
val size = UInt(width = nastiXSizeBits)
val burst = UInt(width = nastiXBurstBits)
val lock = Bool()
val cache = UInt(width = nastiXCacheBits)
val prot = UInt(width = nastiXProtBits)
val qos = UInt(width = nastiXQosBits)
val region = UInt(width = nastiXRegionBits)
}
trait HasNastiData extends HasNastiParameters {
val data = UInt(width = nastiXDataBits)
val last = Bool()
}
class NastiReadIO(implicit val p: Parameters) extends ParameterizedBundle()(p) {
val ar = Decoupled(new NastiReadAddressChannel)
val r = Decoupled(new NastiReadDataChannel).flip
}
class NastiWriteIO(implicit val p: Parameters) extends ParameterizedBundle()(p) {
val aw = Decoupled(new NastiWriteAddressChannel)
val w = Decoupled(new NastiWriteDataChannel)
val b = Decoupled(new NastiWriteResponseChannel).flip
}
class NastiIO(implicit val p: Parameters) extends ParameterizedBundle()(p) {
val aw = Decoupled(new NastiWriteAddressChannel)
val w = Decoupled(new NastiWriteDataChannel)
val b = Decoupled(new NastiWriteResponseChannel).flip
val ar = Decoupled(new NastiReadAddressChannel)
val r = Decoupled(new NastiReadDataChannel).flip
}
class NastiAddressChannel(implicit p: Parameters) extends NastiMasterToSlaveChannel()(p)
with HasNastiMetadata
class NastiResponseChannel(implicit p: Parameters) extends NastiSlaveToMasterChannel()(p) {
val resp = UInt(width = nastiXRespBits)
}
class NastiWriteAddressChannel(implicit p: Parameters) extends NastiAddressChannel()(p) {
val id = UInt(width = nastiWIdBits)
val user = UInt(width = nastiAWUserBits)
}
class NastiWriteDataChannel(implicit p: Parameters) extends NastiMasterToSlaveChannel()(p)
with HasNastiData {
val id = UInt(width = nastiWIdBits)
val strb = UInt(width = nastiWStrobeBits)
val user = UInt(width = nastiWUserBits)
}
class NastiWriteResponseChannel(implicit p: Parameters) extends NastiResponseChannel()(p) {
val id = UInt(width = nastiWIdBits)
val user = UInt(width = nastiBUserBits)
}
class NastiReadAddressChannel(implicit p: Parameters) extends NastiAddressChannel()(p) {
val id = UInt(width = nastiRIdBits)
val user = UInt(width = nastiARUserBits)
}
class NastiReadDataChannel(implicit p: Parameters) extends NastiResponseChannel()(p)
with HasNastiData {
val id = UInt(width = nastiRIdBits)
val user = UInt(width = nastiRUserBits)
}
object NastiConstants {
val BURST_FIXED = UInt("b00")
val BURST_INCR = UInt("b01")
val BURST_WRAP = UInt("b10")
val RESP_OKAY = UInt("b00")
val RESP_EXOKAY = UInt("b01")
val RESP_SLVERR = UInt("b10")
val RESP_DECERR = UInt("b11")
}
import NastiConstants._
object NastiWriteAddressChannel {
def apply(id: UInt, addr: UInt, size: UInt,
len: UInt = UInt(0), burst: UInt = BURST_INCR)
(implicit p: Parameters) = {
val aw = Wire(new NastiWriteAddressChannel)
aw.id := id
aw.addr := addr
aw.len := len
aw.size := size
aw.burst := burst
aw.lock := Bool(false)
aw.cache := UInt("b0000")
aw.prot := UInt("b000")
aw.qos := UInt("b0000")
aw.region := UInt("b0000")
aw.user := UInt(0)
aw
}
}
object NastiReadAddressChannel {
def apply(id: UInt, addr: UInt, size: UInt,
len: UInt = UInt(0), burst: UInt = BURST_INCR)
(implicit p: Parameters) = {
val ar = Wire(new NastiReadAddressChannel)
ar.id := id
ar.addr := addr
ar.len := len
ar.size := size
ar.burst := burst
ar.lock := Bool(false)
ar.cache := UInt(0)
ar.prot := UInt(0)
ar.qos := UInt(0)
ar.region := UInt(0)
ar.user := UInt(0)
ar
}
}
object NastiWriteDataChannel {
def apply(data: UInt, strb: Option[UInt] = None,
last: Bool = Bool(true), id: UInt = UInt(0))
(implicit p: Parameters): NastiWriteDataChannel = {
val w = Wire(new NastiWriteDataChannel)
w.strb := strb.getOrElse(Fill(w.nastiWStrobeBits, UInt(1, 1)))
w.data := data
w.last := last
w.id := id
w.user := UInt(0)
w
}
}
object NastiReadDataChannel {
def apply(id: UInt, data: UInt, last: Bool = Bool(true), resp: UInt = UInt(0))(
implicit p: Parameters) = {
val r = Wire(new NastiReadDataChannel)
r.id := id
r.data := data
r.last := last
r.resp := resp
r.user := UInt(0)
r
}
}
object NastiWriteResponseChannel {
def apply(id: UInt, resp: UInt = UInt(0))(implicit p: Parameters) = {
val b = Wire(new NastiWriteResponseChannel)
b.id := id
b.resp := resp
b.user := UInt(0)
b
}
}
class MemIONastiIOConverter(cacheBlockOffsetBits: Int)(implicit p: Parameters) extends MIFModule
with HasNastiParameters {
val io = new Bundle {
val nasti = (new NastiIO).flip
val mem = new MemIO
}
require(mifDataBits == nastiXDataBits, "Data sizes between LLC and MC don't agree")
val (mif_cnt_out, mif_wrap_out) = Counter(io.mem.resp.fire(), mifDataBeats)
assert(!io.nasti.aw.valid || io.nasti.aw.bits.size === UInt(log2Up(mifDataBits/8)),
"Nasti data size does not match MemIO data size")
assert(!io.nasti.ar.valid || io.nasti.ar.bits.size === UInt(log2Up(mifDataBits/8)),
"Nasti data size does not match MemIO data size")
assert(!io.nasti.aw.valid || io.nasti.aw.bits.len === UInt(mifDataBeats - 1),
"Nasti length does not match number of MemIO beats")
assert(!io.nasti.ar.valid || io.nasti.ar.bits.len === UInt(mifDataBeats - 1),
"Nasti length does not match number of MemIO beats")
// according to the spec, we can't send b until the last transfer on w
val b_ok = Reg(init = Bool(true))
when (io.nasti.aw.fire()) { b_ok := Bool(false) }
when (io.nasti.w.fire() && io.nasti.w.bits.last) { b_ok := Bool(true) }
val id_q = Module(new Queue(UInt(width = nastiWIdBits), 2))
id_q.io.enq.valid := io.nasti.aw.valid && io.mem.req_cmd.ready
id_q.io.enq.bits := io.nasti.aw.bits.id
id_q.io.deq.ready := io.nasti.b.ready && b_ok
io.mem.req_cmd.bits.addr := Mux(io.nasti.aw.valid, io.nasti.aw.bits.addr, io.nasti.ar.bits.addr) >>
UInt(cacheBlockOffsetBits)
io.mem.req_cmd.bits.tag := Mux(io.nasti.aw.valid, io.nasti.aw.bits.id, io.nasti.ar.bits.id)
io.mem.req_cmd.bits.rw := io.nasti.aw.valid
io.mem.req_cmd.valid := (io.nasti.aw.valid && id_q.io.enq.ready) || io.nasti.ar.valid
io.nasti.ar.ready := io.mem.req_cmd.ready && !io.nasti.aw.valid
io.nasti.aw.ready := io.mem.req_cmd.ready && id_q.io.enq.ready
io.nasti.b.valid := id_q.io.deq.valid && b_ok
io.nasti.b.bits.id := id_q.io.deq.bits
io.nasti.b.bits.resp := UInt(0)
io.nasti.w.ready := io.mem.req_data.ready
io.mem.req_data.valid := io.nasti.w.valid
io.mem.req_data.bits.data := io.nasti.w.bits.data
assert(!io.nasti.w.valid || io.nasti.w.bits.strb.andR, "MemIO must write full cache line")
io.nasti.r.valid := io.mem.resp.valid
io.nasti.r.bits.data := io.mem.resp.bits.data
io.nasti.r.bits.last := mif_wrap_out
io.nasti.r.bits.id := io.mem.resp.bits.tag
io.nasti.r.bits.resp := UInt(0)
io.mem.resp.ready := io.nasti.r.ready
}
class NastiArbiterIO(arbN: Int)(implicit p: Parameters) extends Bundle {
val master = Vec(arbN, new NastiIO).flip
val slave = new NastiIO
override def cloneType =
new NastiArbiterIO(arbN).asInstanceOf[this.type]
}
/** Arbitrate among arbN masters requesting to a single slave */
class NastiArbiter(val arbN: Int)(implicit p: Parameters) extends NastiModule {
val io = new NastiArbiterIO(arbN)
if (arbN > 1) {
val arbIdBits = log2Up(arbN)
val ar_arb = Module(new RRArbiter(new NastiReadAddressChannel, arbN))
val aw_arb = Module(new RRArbiter(new NastiWriteAddressChannel, arbN))
val slave_r_arb_id = io.slave.r.bits.id(arbIdBits - 1, 0)
val slave_b_arb_id = io.slave.b.bits.id(arbIdBits - 1, 0)
val w_chosen = Reg(UInt(width = arbIdBits))
val w_done = Reg(init = Bool(true))
when (aw_arb.io.out.fire()) {
w_chosen := aw_arb.io.chosen
w_done := Bool(false)
}
when (io.slave.w.fire() && io.slave.w.bits.last) {
w_done := Bool(true)
}
for (i <- 0 until arbN) {
val m_ar = io.master(i).ar
val m_aw = io.master(i).aw
val m_r = io.master(i).r
val m_b = io.master(i).b
val a_ar = ar_arb.io.in(i)
val a_aw = aw_arb.io.in(i)
val m_w = io.master(i).w
a_ar <> m_ar
a_ar.bits.id := Cat(m_ar.bits.id, UInt(i, arbIdBits))
a_aw <> m_aw
a_aw.bits.id := Cat(m_aw.bits.id, UInt(i, arbIdBits))
m_r.valid := io.slave.r.valid && slave_r_arb_id === UInt(i)
m_r.bits := io.slave.r.bits
m_r.bits.id := io.slave.r.bits.id >> UInt(arbIdBits)
m_b.valid := io.slave.b.valid && slave_b_arb_id === UInt(i)
m_b.bits := io.slave.b.bits
m_b.bits.id := io.slave.b.bits.id >> UInt(arbIdBits)
m_w.ready := io.slave.w.ready && w_chosen === UInt(i) && !w_done
}
io.slave.r.ready := io.master(slave_r_arb_id).r.ready
io.slave.b.ready := io.master(slave_b_arb_id).b.ready
io.slave.w.bits := io.master(w_chosen).w.bits
io.slave.w.valid := io.master(w_chosen).w.valid && !w_done
io.slave.ar <> ar_arb.io.out
io.slave.aw.bits <> aw_arb.io.out.bits
io.slave.aw.valid := aw_arb.io.out.valid && w_done
aw_arb.io.out.ready := io.slave.aw.ready && w_done
} else { io.slave <> io.master.head }
}
/** A slave that send decode error for every request it receives */
class NastiErrorSlave(implicit p: Parameters) extends NastiModule {
val io = (new NastiIO).flip
when (io.ar.fire()) { printf("Invalid read address %x\n", io.ar.bits.addr) }
when (io.aw.fire()) { printf("Invalid write address %x\n", io.aw.bits.addr) }
val r_queue = Module(new Queue(new NastiReadAddressChannel, 1))
r_queue.io.enq <> io.ar
val responding = Reg(init = Bool(false))
val beats_left = Reg(init = UInt(0, nastiXLenBits))
when (!responding && r_queue.io.deq.valid) {
responding := Bool(true)
beats_left := r_queue.io.deq.bits.len
}
io.r.valid := r_queue.io.deq.valid && responding
io.r.bits.id := r_queue.io.deq.bits.id
io.r.bits.data := UInt(0)
io.r.bits.resp := RESP_DECERR
io.r.bits.last := beats_left === UInt(0)
r_queue.io.deq.ready := io.r.fire() && io.r.bits.last
when (io.r.fire()) {
when (beats_left === UInt(0)) {
responding := Bool(false)
} .otherwise {
beats_left := beats_left - UInt(1)
}
}
val draining = Reg(init = Bool(false))
io.w.ready := draining
when (io.aw.fire()) { draining := Bool(true) }
when (io.w.fire() && io.w.bits.last) { draining := Bool(false) }
val b_queue = Module(new Queue(UInt(width = nastiWIdBits), 1))
b_queue.io.enq.valid := io.aw.valid && !draining
b_queue.io.enq.bits := io.aw.bits.id
io.aw.ready := b_queue.io.enq.ready && !draining
io.b.valid := b_queue.io.deq.valid && !draining
io.b.bits.id := b_queue.io.deq.bits
io.b.bits.resp := Bits("b11")
b_queue.io.deq.ready := io.b.ready && !draining
}
class NastiRouterIO(nSlaves: Int)(implicit p: Parameters) extends Bundle {
val master = (new NastiIO).flip
val slave = Vec(nSlaves, new NastiIO)
override def cloneType =
new NastiRouterIO(nSlaves).asInstanceOf[this.type]
}
/** Take a single Nasti master and route its requests to various slaves
* @param nSlaves the number of slaves
* @param routeSel a function which takes an address and produces
* a one-hot encoded selection of the slave to write to */
class NastiRouter(nSlaves: Int, routeSel: UInt => UInt)(implicit p: Parameters)
extends NastiModule {
val io = new NastiRouterIO(nSlaves)
val ar_route = routeSel(io.master.ar.bits.addr)
val aw_route = routeSel(io.master.aw.bits.addr)
var ar_ready = Bool(false)
var aw_ready = Bool(false)
var w_ready = Bool(false)
io.slave.zipWithIndex.foreach { case (s, i) =>
s.ar.valid := io.master.ar.valid && ar_route(i)
s.ar.bits := io.master.ar.bits
ar_ready = ar_ready || (s.ar.ready && ar_route(i))
s.aw.valid := io.master.aw.valid && aw_route(i)
s.aw.bits := io.master.aw.bits
aw_ready = aw_ready || (s.aw.ready && aw_route(i))
val chosen = Reg(init = Bool(false))
when (s.w.fire() && s.w.bits.last) { chosen := Bool(false) }
when (s.aw.fire()) { chosen := Bool(true) }
s.w.valid := io.master.w.valid && chosen
s.w.bits := io.master.w.bits
w_ready = w_ready || (s.w.ready && chosen)
}
val r_invalid = !ar_route.orR
val w_invalid = !aw_route.orR
val err_slave = Module(new NastiErrorSlave)
err_slave.io.ar.valid := r_invalid && io.master.ar.valid
err_slave.io.ar.bits := io.master.ar.bits
err_slave.io.aw.valid := w_invalid && io.master.aw.valid
err_slave.io.aw.bits := io.master.aw.bits
err_slave.io.w.valid := io.master.w.valid
err_slave.io.w.bits := io.master.w.bits
io.master.ar.ready := ar_ready || (r_invalid && err_slave.io.ar.ready)
io.master.aw.ready := aw_ready || (w_invalid && err_slave.io.aw.ready)
io.master.w.ready := w_ready || err_slave.io.w.ready
val b_arb = Module(new RRArbiter(new NastiWriteResponseChannel, nSlaves + 1))
val r_arb = Module(new JunctionsPeekingArbiter(
new NastiReadDataChannel, nSlaves + 1,
// we can unlock if it's the last beat
(r: NastiReadDataChannel) => r.last))
for (i <- 0 until nSlaves) {
b_arb.io.in(i) <> io.slave(i).b
r_arb.io.in(i) <> io.slave(i).r
}
b_arb.io.in(nSlaves) <> err_slave.io.b
r_arb.io.in(nSlaves) <> err_slave.io.r
io.master.b <> b_arb.io.out
io.master.r <> r_arb.io.out
}
/** Crossbar between multiple Nasti masters and slaves
* @param nMasters the number of Nasti masters
* @param nSlaves the number of Nasti slaves
* @param routeSel a function selecting the slave to route an address to */
class NastiCrossbar(nMasters: Int, nSlaves: Int, routeSel: UInt => UInt)
(implicit p: Parameters) extends NastiModule {
val io = new Bundle {
val masters = Vec(nMasters, new NastiIO).flip
val slaves = Vec(nSlaves, new NastiIO)
}
if (nMasters == 1) {
val router = Module(new NastiRouter(nSlaves, routeSel))
router.io.master <> io.masters.head
io.slaves <> router.io.slave
} else {
val routers = Vec.fill(nMasters) { Module(new NastiRouter(nSlaves, routeSel)).io }
val arbiters = Vec.fill(nSlaves) { Module(new NastiArbiter(nMasters)).io }
for (i <- 0 until nMasters) {
routers(i).master <> io.masters(i)
}
for (i <- 0 until nSlaves) {
arbiters(i).master <> Vec(routers.map(r => r.slave(i)))
io.slaves(i) <> arbiters(i).slave
}
}
}
class NastiInterconnectIO(val nMasters: Int, val nSlaves: Int)
(implicit p: Parameters) extends Bundle {
/* This is a bit confusing. The interconnect is a slave to the masters and
* a master to the slaves. Hence why the declarations seem to be backwards. */
val masters = Vec(nMasters, new NastiIO).flip
val slaves = Vec(nSlaves, new NastiIO)
override def cloneType =
new NastiInterconnectIO(nMasters, nSlaves).asInstanceOf[this.type]
}
abstract class NastiInterconnect(implicit p: Parameters) extends NastiModule()(p) {
val nMasters: Int
val nSlaves: Int
lazy val io = new NastiInterconnectIO(nMasters, nSlaves)
}
class NastiRecursiveInterconnect(val nMasters: Int, addrMap: AddrMap)
(implicit p: Parameters) extends NastiInterconnect()(p) {
def port(name: String) = io.slaves(addrMap.port(name))
val nSlaves = addrMap.numSlaves
val routeSel = (addr: UInt) =>
Cat(addrMap.entries.map(e => addrMap(e.name).containsAddress(addr)).reverse)
val xbar = Module(new NastiCrossbar(nMasters, addrMap.length, routeSel))
xbar.io.masters <> io.masters
io.slaves <> addrMap.entries.zip(xbar.io.slaves).flatMap {
case (entry, xbarSlave) => {
entry.region match {
case submap: AddrMap if submap.entries.isEmpty =>
val err_slave = Module(new NastiErrorSlave)
err_slave.io <> xbarSlave
None
case submap: AddrMap =>
val ic = Module(new NastiRecursiveInterconnect(1, submap))
ic.io.masters.head <> xbarSlave
ic.io.slaves
case r: MemRange =>
Some(xbarSlave)
}
}
}
}
class ChannelHelper(nChannels: Int)
(implicit val p: Parameters) extends HasNastiParameters {
val dataBytes = p(MIFDataBits) * p(MIFDataBeats) / 8
val chanSelBits = log2Ceil(nChannels)
val selOffset = log2Up(dataBytes)
val blockOffset = selOffset + chanSelBits
def getSelect(addr: UInt) =
if (nChannels > 1) addr(blockOffset - 1, selOffset) else UInt(0)
def getAddr(addr: UInt) =
if (nChannels > 1)
Cat(addr(nastiXAddrBits - 1, blockOffset), addr(selOffset - 1, 0))
else addr
}
class NastiMemoryInterconnect(
nBanksPerChannel: Int, nChannels: Int)
(implicit p: Parameters) extends NastiInterconnect()(p) {
val nBanks = nBanksPerChannel * nChannels
val nMasters = nBanks
val nSlaves = nChannels
val chanHelper = new ChannelHelper(nChannels)
def connectChannel(outer: NastiIO, inner: NastiIO) {
outer <> inner
outer.ar.bits.addr := chanHelper.getAddr(inner.ar.bits.addr)
outer.aw.bits.addr := chanHelper.getAddr(inner.aw.bits.addr)
}
for (i <- 0 until nChannels) {
/* Bank assignments to channels are strided so that consecutive banks
* map to different channels. That way, consecutive cache lines also
* map to different channels */
val banks = (i until nBanks by nChannels).map(j => io.masters(j))
val channelArb = Module(new NastiArbiter(nBanksPerChannel))
channelArb.io.master <> banks
connectChannel(io.slaves(i), channelArb.io.slave)
}
}
/** Allows users to switch between various memory configurations. Note that
* this is a dangerous operation: not only does switching the select input to
* this module violate Nasti, it also causes the memory of the machine to
* become garbled. It's expected that select only changes at boot time, as
* part of the memory controller configuration. */
class NastiMemorySelectorIO(val nBanks: Int, val maxMemChannels: Int, nConfigs: Int)
(implicit p: Parameters)
extends NastiInterconnectIO(nBanks, maxMemChannels) {
val select = UInt(INPUT, width = log2Up(nConfigs))
override def cloneType =
new NastiMemorySelectorIO(nMasters, nSlaves, nConfigs).asInstanceOf[this.type]
}
class NastiMemorySelector(nBanks: Int, maxMemChannels: Int, configs: Seq[Int])
(implicit p: Parameters)
extends NastiInterconnect()(p) {
val nMasters = nBanks
val nSlaves = maxMemChannels
val nConfigs = configs.size
override lazy val io = new NastiMemorySelectorIO(nBanks, maxMemChannels, nConfigs)
def muxOnSelect(up: DecoupledIO[Bundle], dn: DecoupledIO[Bundle], active: Bool): Unit = {
when (active) { dn.bits := up.bits }
when (active) { up.ready := dn.ready }
when (active) { dn.valid := up.valid }
}
def muxOnSelect(up: NastiIO, dn: NastiIO, active: Bool): Unit = {
muxOnSelect(up.aw, dn.aw, active)
muxOnSelect(up.w, dn.w, active)
muxOnSelect(dn.b, up.b, active)
muxOnSelect(up.ar, dn.ar, active)
muxOnSelect(dn.r, up.r, active)
}
def muxOnSelect(up: Vec[NastiIO], dn: Vec[NastiIO], active: Bool) : Unit = {
for (i <- 0 until up.size)
muxOnSelect(up(i), dn(i), active)
}
/* Disconnects a vector of Nasti ports, which involves setting them to
* invalid. Due to Chisel reasons, we need to also set the bits to 0 (since
* there can't be any unconnected inputs). */
def disconnectSlave(slave: Vec[NastiIO]) = {
slave.foreach{ m =>
m.aw.valid := Bool(false)
m.aw.bits := m.aw.bits.fromBits( UInt(0) )
m.w.valid := Bool(false)
m.w.bits := m.w.bits.fromBits( UInt(0) )
m.b.ready := Bool(false)
m.ar.valid := Bool(false)
m.ar.bits := m.ar.bits.fromBits( UInt(0) )
m.r.ready := Bool(false)
}
}
def disconnectMaster(master: Vec[NastiIO]) = {
master.foreach{ m =>
m.aw.ready := Bool(false)
m.w.ready := Bool(false)
m.b.valid := Bool(false)
m.b.bits := m.b.bits.fromBits( UInt(0) )
m.ar.ready := Bool(false)
m.r.valid := Bool(false)
m.r.bits := m.r.bits.fromBits( UInt(0) )
}
}
/* Provides default wires on all our outputs. */
disconnectMaster(io.masters)
disconnectSlave(io.slaves)
/* Constructs interconnects for each of the layouts suggested by the
* configuration and switches between them based on the select input. */
configs.zipWithIndex.foreach{ case (nChannels, select) =>
val nBanksPerChannel = nBanks / nChannels
val ic = Module(new NastiMemoryInterconnect(nBanksPerChannel, nChannels))
disconnectMaster(ic.io.slaves)
disconnectSlave(ic.io.masters)
muxOnSelect( io.masters, ic.io.masters, io.select === UInt(select))
muxOnSelect(ic.io.slaves, io.slaves, io.select === UInt(select))
}
}
class NastiMemoryDemux(nRoutes: Int)(implicit p: Parameters) extends NastiModule()(p) {
val io = new Bundle {
val master = (new NastiIO).flip
val slaves = Vec(nRoutes, new NastiIO)
val select = UInt(INPUT, log2Up(nRoutes))
}
def connectReqChannel[T <: Data](idx: Int, out: DecoupledIO[T], in: DecoupledIO[T]) {
out.valid := in.valid && io.select === UInt(idx)
out.bits := in.bits
when (io.select === UInt(idx)) { in.ready := out.ready }
}
def connectRespChannel[T <: Data](idx: Int, out: DecoupledIO[T], in: DecoupledIO[T]) {
when (io.select === UInt(idx)) { out.valid := in.valid }
when (io.select === UInt(idx)) { out.bits := in.bits }
in.ready := out.ready && io.select === UInt(idx)
}
io.master.ar.ready := Bool(false)
io.master.aw.ready := Bool(false)
io.master.w.ready := Bool(false)
io.master.r.valid := Bool(false)
io.master.r.bits := NastiReadDataChannel(id = UInt(0), data = UInt(0))
io.master.b.valid := Bool(false)
io.master.b.bits := NastiWriteResponseChannel(id = UInt(0))
io.slaves.zipWithIndex.foreach { case (slave, i) =>
connectReqChannel(i, slave.ar, io.master.ar)
connectReqChannel(i, slave.aw, io.master.aw)
connectReqChannel(i, slave.w, io.master.w)
connectRespChannel(i, io.master.r, slave.r)
connectRespChannel(i, io.master.b, slave.b)
}
}
object AsyncNastiTo {
// source(master) is in our clock domain, output is in the 'to' clock domain
def apply[T <: Data](to_clock: Clock, to_reset: Bool, source: NastiIO, depth: Int = 3, sync: Int = 2)(implicit p: Parameters): NastiIO = {
val sink = Wire(new NastiIO)
sink.aw <> AsyncDecoupledTo(to_clock, to_reset, source.aw, depth, sync)
sink.ar <> AsyncDecoupledTo(to_clock, to_reset, source.ar, depth, sync)
sink.w <> AsyncDecoupledTo(to_clock, to_reset, source.w, depth, sync)
source.b <> AsyncDecoupledFrom(to_clock, to_reset, sink.b, depth, sync)
source.r <> AsyncDecoupledFrom(to_clock, to_reset, sink.r, depth, sync)
sink
}
}
object AsyncNastiFrom {
// source(master) is in the 'from' clock domain, output is in our clock domain
def apply[T <: Data](from_clock: Clock, from_reset: Bool, source: NastiIO, depth: Int = 3, sync: Int = 2)(implicit p: Parameters): NastiIO = {
val sink = Wire(new NastiIO)
sink.aw <> AsyncDecoupledFrom(from_clock, from_reset, source.aw, depth, sync)
sink.ar <> AsyncDecoupledFrom(from_clock, from_reset, source.ar, depth, sync)
sink.w <> AsyncDecoupledFrom(from_clock, from_reset, source.w, depth, sync)
source.b <> AsyncDecoupledTo(from_clock, from_reset, sink.b, depth, sync)
source.r <> AsyncDecoupledTo(from_clock, from_reset, sink.r, depth, sync)
sink
}
}

View File

@ -0,0 +1 @@
package object junctions

View File

@ -0,0 +1,82 @@
package junctions
import Chisel._
import cde.{Parameters, Field}
class PociIO(implicit p: Parameters) extends HastiBundle()(p)
{
val paddr = UInt(OUTPUT, hastiAddrBits)
val pwrite = Bool(OUTPUT)
val psel = Bool(OUTPUT)
val penable = Bool(OUTPUT)
val pwdata = UInt(OUTPUT, hastiDataBits)
val prdata = UInt(INPUT, hastiDataBits)
val pready = Bool(INPUT)
val pslverr = Bool(INPUT)
}
class HastiToPociBridge(implicit p: Parameters) extends HastiModule()(p) {
val io = new Bundle {
val in = new HastiSlaveIO
val out = new PociIO
}
val s_idle :: s_setup :: s_access :: Nil = Enum(UInt(), 3)
val state = Reg(init = s_idle)
val transfer = io.in.hsel & io.in.htrans(1)
switch (state) {
is (s_idle) {
when (transfer) { state := s_setup }
}
is (s_setup) {
state := s_access
}
is (s_access) {
when (io.out.pready & ~transfer) { state := s_idle }
when (io.out.pready & transfer) { state := s_setup }
when (~io.out.pready) { state := s_access }
}
}
val haddr_reg = Reg(UInt(width = hastiAddrBits))
val hwrite_reg = Reg(UInt(width = 1))
when (transfer) {
haddr_reg := io.in.haddr
hwrite_reg := io.in.hwrite
}
io.out.paddr := haddr_reg
io.out.pwrite := hwrite_reg(0)
io.out.psel := (state =/= s_idle)
io.out.penable := (state === s_access)
io.out.pwdata := io.in.hwdata
io.in.hrdata := io.out.prdata
io.in.hready := ((state === s_access) & io.out.pready) | (state === s_idle)
io.in.hresp := io.out.pslverr
}
class PociBus(amap: Seq[UInt=>Bool])(implicit p: Parameters) extends HastiModule()(p)
{
val io = new Bundle {
val master = new PociIO().flip
val slaves = Vec(amap.size, new PociIO)
}
val psels = PriorityEncoderOH(
(io.slaves zip amap) map { case (s, afn) => {
s.paddr := io.master.paddr
s.pwrite := io.master.pwrite
s.pwdata := io.master.pwdata
afn(io.master.paddr) && io.master.psel
}})
(io.slaves zip psels) foreach { case (s, psel) => {
s.psel := psel
s.penable := io.master.penable && psel
} }
io.master.prdata := Mux1H(psels, io.slaves.map(_.prdata))
io.master.pready := Mux1H(psels, io.slaves.map(_.pready))
io.master.pslverr := Mux1H(psels, io.slaves.map(_.pslverr))
}

View File

@ -0,0 +1,70 @@
// See LICENSE for license details.
package junctions
import Chisel._
class SlowIO[T <: Data](val divisor_max: Int)(data: => T) extends Module
{
val io = new Bundle {
val out_fast = Decoupled(data).flip
val out_slow = Decoupled(data)
val in_fast = Decoupled(data)
val in_slow = Decoupled(data).flip
val clk_slow = Bool(OUTPUT)
val set_divisor = Valid(Bits(width = 32)).flip
val divisor = Bits(OUTPUT, 32)
}
require(divisor_max >= 8 && divisor_max <= 65536 && isPow2(divisor_max))
val divisor = Reg(init=UInt(divisor_max-1))
val d_shadow = Reg(init=UInt(divisor_max-1))
val hold = Reg(init=UInt(divisor_max/4-1))
val h_shadow = Reg(init=UInt(divisor_max/4-1))
when (io.set_divisor.valid) {
d_shadow := io.set_divisor.bits(log2Up(divisor_max)-1, 0)
h_shadow := io.set_divisor.bits(log2Up(divisor_max)-1+16, 16)
}
io.divisor := (hold << 16) | divisor
val count = Reg{UInt(width = log2Up(divisor_max))}
val myclock = Reg{Bool()}
count := count + UInt(1)
val rising = count === (divisor >> 1)
val falling = count === divisor
val held = count === (divisor >> 1) + hold
when (falling) {
divisor := d_shadow
hold := h_shadow
count := UInt(0)
myclock := Bool(false)
}
when (rising) {
myclock := Bool(true)
}
val in_slow_rdy = Reg(init=Bool(false))
val out_slow_val = Reg(init=Bool(false))
val out_slow_bits = Reg(data)
val fromhost_q = Module(new Queue(data,1))
fromhost_q.io.enq.valid := rising && (io.in_slow.valid && in_slow_rdy || this.reset)
fromhost_q.io.enq.bits := io.in_slow.bits
io.in_fast <> fromhost_q.io.deq
val tohost_q = Module(new Queue(data,1))
tohost_q.io.enq <> io.out_fast
tohost_q.io.deq.ready := rising && io.out_slow.ready && out_slow_val
when (held) {
in_slow_rdy := fromhost_q.io.enq.ready
out_slow_val := tohost_q.io.deq.valid
out_slow_bits := Mux(this.reset, fromhost_q.io.deq.bits, tohost_q.io.deq.bits)
}
io.in_slow.ready := in_slow_rdy
io.out_slow.valid := out_slow_val
io.out_slow.bits := out_slow_bits
io.clk_slow := myclock
}

View File

@ -0,0 +1,281 @@
package junctions
import Chisel._
import cde.Parameters
class SmiReq(val dataWidth: Int, val addrWidth: Int) extends Bundle {
val rw = Bool()
val addr = UInt(width = addrWidth)
val data = Bits(width = dataWidth)
override def cloneType =
new SmiReq(dataWidth, addrWidth).asInstanceOf[this.type]
}
/** Simple Memory Interface IO. Used to communicate with PCR and SCR
* @param dataWidth the width in bits of the data field
* @param addrWidth the width in bits of the addr field */
class SmiIO(val dataWidth: Int, val addrWidth: Int) extends Bundle {
val req = Decoupled(new SmiReq(dataWidth, addrWidth))
val resp = Decoupled(Bits(width = dataWidth)).flip
override def cloneType =
new SmiIO(dataWidth, addrWidth).asInstanceOf[this.type]
}
abstract class SmiPeripheral extends Module {
val dataWidth: Int
val addrWidth: Int
lazy val io = new SmiIO(dataWidth, addrWidth).flip
}
/** A simple sequential memory accessed through Smi */
class SmiMem(val dataWidth: Int, val memDepth: Int) extends SmiPeripheral {
// override
val addrWidth = log2Up(memDepth)
val mem = SeqMem(memDepth, Bits(width = dataWidth))
val ren = io.req.fire() && !io.req.bits.rw
val wen = io.req.fire() && io.req.bits.rw
when (wen) { mem.write(io.req.bits.addr, io.req.bits.data) }
val resp_valid = Reg(init = Bool(false))
when (io.resp.fire()) { resp_valid := Bool(false) }
when (io.req.fire()) { resp_valid := Bool(true) }
io.resp.valid := resp_valid
io.resp.bits := mem.read(io.req.bits.addr, ren)
io.req.ready := !resp_valid
}
/** Arbitrate among several Smi clients
* @param n the number of clients
* @param dataWidth Smi data width
* @param addrWidth Smi address width */
class SmiArbiter(val n: Int, val dataWidth: Int, val addrWidth: Int)
extends Module {
val io = new Bundle {
val in = Vec(n, new SmiIO(dataWidth, addrWidth)).flip
val out = new SmiIO(dataWidth, addrWidth)
}
val wait_resp = Reg(init = Bool(false))
val choice = Reg(UInt(width = log2Up(n)))
val req_arb = Module(new RRArbiter(new SmiReq(dataWidth, addrWidth), n))
req_arb.io.in <> io.in.map(_.req)
req_arb.io.out.ready := io.out.req.ready && !wait_resp
io.out.req.bits := req_arb.io.out.bits
io.out.req.valid := req_arb.io.out.valid && !wait_resp
when (io.out.req.fire()) {
choice := req_arb.io.chosen
wait_resp := Bool(true)
}
when (io.out.resp.fire()) { wait_resp := Bool(false) }
for ((resp, i) <- io.in.map(_.resp).zipWithIndex) {
resp.bits := io.out.resp.bits
resp.valid := io.out.resp.valid && choice === UInt(i)
}
io.out.resp.ready := io.in(choice).resp.ready
}
class SmiIONastiReadIOConverter(val dataWidth: Int, val addrWidth: Int)
(implicit p: Parameters) extends NastiModule()(p) {
val io = new Bundle {
val nasti = new NastiReadIO().flip
val smi = new SmiIO(dataWidth, addrWidth)
}
private val maxWordsPerBeat = nastiXDataBits / dataWidth
private val wordCountBits = log2Up(maxWordsPerBeat)
private val byteOffBits = log2Up(dataWidth / 8)
private val addrOffBits = addrWidth + byteOffBits
private def calcWordCount(size: UInt): UInt =
(UInt(1) << (size - UInt(byteOffBits))) - UInt(1)
val (s_idle :: s_read :: s_resp :: Nil) = Enum(Bits(), 3)
val state = Reg(init = s_idle)
val nWords = Reg(UInt(width = wordCountBits))
val nBeats = Reg(UInt(width = nastiXLenBits))
val addr = Reg(UInt(width = addrWidth))
val id = Reg(UInt(width = nastiRIdBits))
val byteOff = Reg(UInt(width = byteOffBits))
val recvInd = Reg(init = UInt(0, wordCountBits))
val sendDone = Reg(init = Bool(false))
val buffer = Reg(init = Vec.fill(maxWordsPerBeat) { Bits(0, dataWidth) })
io.nasti.ar.ready := (state === s_idle)
io.smi.req.valid := (state === s_read) && !sendDone
io.smi.req.bits.rw := Bool(false)
io.smi.req.bits.addr := addr
io.smi.resp.ready := (state === s_read)
io.nasti.r.valid := (state === s_resp)
io.nasti.r.bits := NastiReadDataChannel(
id = id,
data = buffer.asUInt,
last = (nBeats === UInt(0)))
when (io.nasti.ar.fire()) {
when (io.nasti.ar.bits.size < UInt(byteOffBits)) {
nWords := UInt(0)
} .otherwise {
nWords := calcWordCount(io.nasti.ar.bits.size)
}
nBeats := io.nasti.ar.bits.len
addr := io.nasti.ar.bits.addr(addrOffBits - 1, byteOffBits)
if (maxWordsPerBeat > 1)
recvInd := io.nasti.ar.bits.addr(wordCountBits + byteOffBits - 1, byteOffBits)
else
recvInd := UInt(0)
id := io.nasti.ar.bits.id
state := s_read
}
when (io.smi.req.fire()) {
addr := addr + UInt(1)
sendDone := (nWords === UInt(0))
}
when (io.smi.resp.fire()) {
recvInd := recvInd + UInt(1)
nWords := nWords - UInt(1)
buffer(recvInd) := io.smi.resp.bits
when (nWords === UInt(0)) { state := s_resp }
}
when (io.nasti.r.fire()) {
recvInd := UInt(0)
sendDone := Bool(false)
// clear all the registers in the buffer
buffer.foreach(_ := Bits(0))
nBeats := nBeats - UInt(1)
state := Mux(io.nasti.r.bits.last, s_idle, s_read)
}
}
class SmiIONastiWriteIOConverter(val dataWidth: Int, val addrWidth: Int)
(implicit p: Parameters) extends NastiModule()(p) {
val io = new Bundle {
val nasti = new NastiWriteIO().flip
val smi = new SmiIO(dataWidth, addrWidth)
}
private val dataBytes = dataWidth / 8
private val maxWordsPerBeat = nastiXDataBits / dataWidth
private val byteOffBits = log2Floor(dataBytes)
private val addrOffBits = addrWidth + byteOffBits
private val nastiByteOffBits = log2Ceil(nastiXDataBits / 8)
assert(!io.nasti.aw.valid || io.nasti.aw.bits.size >= UInt(byteOffBits),
"Nasti size must be >= Smi size")
val id = Reg(UInt(width = nastiWIdBits))
val addr = Reg(UInt(width = addrWidth))
val offset = Reg(UInt(width = nastiByteOffBits))
def makeStrobe(offset: UInt, size: UInt, strb: UInt) = {
val sizemask = (UInt(1) << (UInt(1) << size)) - UInt(1)
val bytemask = strb & (sizemask << offset)
Vec.tabulate(maxWordsPerBeat){i => bytemask(dataBytes * i)}.asUInt
}
val size = Reg(UInt(width = nastiXSizeBits))
val strb = Reg(UInt(width = maxWordsPerBeat))
val data = Reg(UInt(width = nastiXDataBits))
val last = Reg(Bool())
val s_idle :: s_data :: s_send :: s_ack :: s_resp :: Nil = Enum(Bits(), 5)
val state = Reg(init = s_idle)
io.nasti.aw.ready := (state === s_idle)
io.nasti.w.ready := (state === s_data)
io.smi.req.valid := (state === s_send) && strb(0)
io.smi.req.bits.rw := Bool(true)
io.smi.req.bits.addr := addr
io.smi.req.bits.data := data(dataWidth - 1, 0)
io.smi.resp.ready := (state === s_ack)
io.nasti.b.valid := (state === s_resp)
io.nasti.b.bits := NastiWriteResponseChannel(id)
val jump = if (maxWordsPerBeat > 1)
PriorityMux(strb(maxWordsPerBeat - 1, 1),
(1 until maxWordsPerBeat).map(UInt(_)))
else UInt(1)
when (io.nasti.aw.fire()) {
if (dataWidth == nastiXDataBits) {
addr := io.nasti.aw.bits.addr(addrOffBits - 1, byteOffBits)
} else {
addr := Cat(io.nasti.aw.bits.addr(addrOffBits - 1, nastiByteOffBits),
UInt(0, nastiByteOffBits - byteOffBits))
}
offset := io.nasti.aw.bits.addr(nastiByteOffBits - 1, 0)
id := io.nasti.aw.bits.id
size := io.nasti.aw.bits.size
last := Bool(false)
state := s_data
}
when (io.nasti.w.fire()) {
last := io.nasti.w.bits.last
strb := makeStrobe(offset, size, io.nasti.w.bits.strb)
data := io.nasti.w.bits.data
state := s_send
}
when (state === s_send) {
when (io.smi.req.ready || !strb(0)) {
strb := strb >> jump
data := data >> Cat(jump, UInt(0, log2Up(dataWidth)))
addr := addr + jump
when (strb(0)) { state := s_ack }
}
}
when (io.smi.resp.fire()) {
state := Mux(strb === UInt(0),
Mux(last, s_resp, s_data), s_send)
}
when (io.nasti.b.fire()) { state := s_idle }
}
/** Convert Nasti protocol to Smi protocol */
class SmiIONastiIOConverter(val dataWidth: Int, val addrWidth: Int)
(implicit p: Parameters) extends NastiModule()(p) {
val io = new Bundle {
val nasti = (new NastiIO).flip
val smi = new SmiIO(dataWidth, addrWidth)
}
require(isPow2(dataWidth), "SMI data width must be power of 2")
require(dataWidth <= nastiXDataBits,
"SMI data width must be less than or equal to NASTI data width")
val reader = Module(new SmiIONastiReadIOConverter(dataWidth, addrWidth))
reader.io.nasti <> io.nasti
val writer = Module(new SmiIONastiWriteIOConverter(dataWidth, addrWidth))
writer.io.nasti <> io.nasti
val arb = Module(new SmiArbiter(2, dataWidth, addrWidth))
arb.io.in(0) <> reader.io.smi
arb.io.in(1) <> writer.io.smi
io.smi <> arb.io.out
}

View File

@ -0,0 +1,187 @@
package junctions
import Chisel._
import NastiConstants._
import cde.Parameters
class StreamChannel(w: Int) extends Bundle {
val data = UInt(width = w)
val last = Bool()
override def cloneType = new StreamChannel(w).asInstanceOf[this.type]
}
class StreamIO(w: Int) extends Bundle {
val out = Decoupled(new StreamChannel(w))
val in = Decoupled(new StreamChannel(w)).flip
override def cloneType = new StreamIO(w).asInstanceOf[this.type]
}
class NastiIOStreamIOConverter(w: Int)(implicit p: Parameters) extends Module {
val io = new Bundle {
val nasti = (new NastiIO).flip
val stream = new StreamIO(w)
}
val streamSize = UInt(log2Up(w / 8))
assert(!io.nasti.ar.valid || io.nasti.ar.bits.size === streamSize,
"read channel wrong size on stream")
assert(!io.nasti.ar.valid || io.nasti.ar.bits.len === UInt(0) ||
io.nasti.ar.bits.burst === BURST_FIXED,
"read channel wrong burst type on stream")
assert(!io.nasti.aw.valid || io.nasti.aw.bits.size === streamSize,
"write channel wrong size on stream")
assert(!io.nasti.aw.valid || io.nasti.aw.bits.len === UInt(0) ||
io.nasti.aw.bits.burst === BURST_FIXED,
"write channel wrong burst type on stream")
assert(!io.nasti.w.valid || io.nasti.w.bits.strb.andR,
"write channel cannot take partial writes")
val read_id = Reg(io.nasti.ar.bits.id)
val read_cnt = Reg(io.nasti.ar.bits.len)
val reading = Reg(init = Bool(false))
io.nasti.ar.ready := !reading
io.nasti.r.valid := reading && io.stream.in.valid
io.nasti.r.bits := io.stream.in.bits
io.nasti.r.bits.resp := UInt(0)
io.nasti.r.bits.id := read_id
io.stream.in.ready := reading && io.nasti.r.ready
when (io.nasti.ar.fire()) {
read_id := io.nasti.ar.bits.id
read_cnt := io.nasti.ar.bits.len
reading := Bool(true)
}
when (io.nasti.r.fire()) {
when (read_cnt === UInt(0)) {
reading := Bool(false)
} .otherwise {
read_cnt := read_cnt - UInt(1)
}
}
val write_id = Reg(io.nasti.aw.bits.id)
val writing = Reg(init = Bool(false))
val write_resp = Reg(init = Bool(false))
io.nasti.aw.ready := !writing && !write_resp
io.nasti.w.ready := writing && io.stream.out.ready
io.stream.out.valid := writing && io.nasti.w.valid
io.stream.out.bits := io.nasti.w.bits
io.nasti.b.valid := write_resp
io.nasti.b.bits.resp := UInt(0)
io.nasti.b.bits.id := write_id
when (io.nasti.aw.fire()) {
write_id := io.nasti.aw.bits.id
writing := Bool(true)
}
when (io.nasti.w.fire() && io.nasti.w.bits.last) {
writing := Bool(false)
write_resp := Bool(true)
}
when (io.nasti.b.fire()) { write_resp := Bool(false) }
}
class StreamNarrower(win: Int, wout: Int) extends Module {
require(win > wout, "Stream narrower input width must be larger than input width")
require(win % wout == 0, "Stream narrower input width must be multiple of output width")
val io = new Bundle {
val in = Decoupled(new StreamChannel(win)).flip
val out = Decoupled(new StreamChannel(wout))
}
val n_pieces = win / wout
val buffer = Reg(Bits(width = win))
val (piece_idx, pkt_done) = Counter(io.out.fire(), n_pieces)
val pieces = Vec.tabulate(n_pieces) { i => buffer(wout * (i + 1) - 1, wout * i) }
val last_piece = (piece_idx === UInt(n_pieces - 1))
val sending = Reg(init = Bool(false))
val in_last = Reg(Bool())
when (io.in.fire()) {
buffer := io.in.bits.data
in_last := io.in.bits.last
sending := Bool(true)
}
when (pkt_done) { sending := Bool(false) }
io.out.valid := sending
io.out.bits.data := pieces(piece_idx)
io.out.bits.last := in_last && last_piece
io.in.ready := !sending
}
class StreamExpander(win: Int, wout: Int) extends Module {
require(win < wout, "Stream expander input width must be smaller than input width")
require(wout % win == 0, "Stream narrower output width must be multiple of input width")
val io = new Bundle {
val in = Decoupled(new StreamChannel(win)).flip
val out = Decoupled(new StreamChannel(wout))
}
val n_pieces = wout / win
val buffer = Reg(Vec(n_pieces, UInt(width = win)))
val last = Reg(Bool())
val collecting = Reg(init = Bool(true))
val (piece_idx, pkt_done) = Counter(io.in.fire(), n_pieces)
when (io.in.fire()) { buffer(piece_idx) := io.in.bits.data }
when (pkt_done) { last := io.in.bits.last; collecting := Bool(false) }
when (io.out.fire()) { collecting := Bool(true) }
io.in.ready := collecting
io.out.valid := !collecting
io.out.bits.data := buffer.asUInt
io.out.bits.last := last
}
object StreamUtils {
def connectStreams(a: StreamIO, b: StreamIO) {
a.in <> b.out
b.in <> a.out
}
}
trait Serializable {
def nbits: Int
}
class Serializer[T <: Data with Serializable](w: Int, typ: T) extends Module {
val io = new Bundle {
val in = Decoupled(typ).flip
val out = Decoupled(Bits(width = w))
}
val narrower = Module(new StreamNarrower(typ.nbits, w))
narrower.io.in.bits.data := io.in.bits.asUInt
narrower.io.in.bits.last := Bool(true)
narrower.io.in.valid := io.in.valid
io.in.ready := narrower.io.in.ready
io.out.valid := narrower.io.out.valid
io.out.bits := narrower.io.out.bits.data
narrower.io.out.ready := io.out.ready
}
class Deserializer[T <: Data with Serializable](w: Int, typ: T) extends Module {
val io = new Bundle {
val in = Decoupled(Bits(width = w)).flip
val out = Decoupled(typ)
}
val expander = Module(new StreamExpander(w, typ.nbits))
expander.io.in.valid := io.in.valid
expander.io.in.bits.data := io.in.bits
expander.io.in.bits.last := Bool(true)
io.in.ready := expander.io.in.ready
io.out.valid := expander.io.out.valid
io.out.bits := typ.cloneType.fromBits(expander.io.out.bits.data)
expander.io.out.ready := io.out.ready
}

View File

@ -0,0 +1,163 @@
package junctions.unittests
import Chisel._
import junctions._
import junctions.NastiConstants._
import cde.Parameters
class NastiDriver(dataWidth: Int, burstLen: Int, nBursts: Int)
(implicit p: Parameters) extends NastiModule {
val io = new Bundle {
val nasti = new NastiIO
val finished = Bool(OUTPUT)
val start = Bool(INPUT)
}
val dataBytes = dataWidth / 8
val nastiDataBytes = nastiXDataBits / 8
val (write_cnt, write_done) = Counter(io.nasti.w.fire(), burstLen)
val (read_cnt, read_done) = Counter(io.nasti.r.fire(), burstLen)
val (req_cnt, reqs_done) = Counter(read_done, nBursts)
val req_addr = Cat(req_cnt, UInt(0, log2Up(burstLen * dataBytes)))
val write_data = UInt(0x10000000L, dataWidth) | Cat(req_cnt, write_cnt)
val expected_data = UInt(0x10000000L, dataWidth) | Cat(req_cnt, read_cnt)
val (s_idle :: s_write_addr :: s_write_data :: s_write_stall :: s_write_resp ::
s_read_addr :: s_read_data :: s_read_stall :: s_done :: Nil) = Enum(Bits(), 9)
val state = Reg(init = s_idle)
val (stall_cnt, stall_done) = Counter(state === s_read_stall, 2)
io.nasti.aw.valid := (state === s_write_addr)
io.nasti.aw.bits := NastiWriteAddressChannel(
id = UInt(0),
addr = req_addr,
size = UInt(log2Up(dataBytes)),
len = UInt(burstLen - 1))
io.nasti.w.valid := (state === s_write_data)
io.nasti.w.bits := NastiWriteDataChannel(
data = Cat(write_data, write_data),
last = (write_cnt === UInt(burstLen - 1)))
io.nasti.b.ready := (state === s_write_resp)
io.nasti.ar.valid := (state === s_read_addr)
io.nasti.ar.bits := NastiReadAddressChannel(
id = UInt(0),
addr = req_addr,
size = UInt(log2Up(dataBytes)),
len = UInt(burstLen - 1))
io.nasti.r.ready := (state === s_read_data)
io.finished := (state === s_done)
when (state === s_idle && io.start) { state := s_write_addr }
when (io.nasti.aw.fire()) { state := s_write_data }
when (io.nasti.w.fire()) { state := s_write_stall }
when (state === s_write_stall) { state := s_write_data }
when (write_done) { state := s_write_resp }
when (io.nasti.b.fire()) { state := s_read_addr }
when (io.nasti.ar.fire()) { state := s_read_data }
when (io.nasti.r.fire()) { state := s_read_stall }
when (stall_done) { state := s_read_data }
when (read_done) { state := s_write_addr }
when (reqs_done) { state := s_done }
val full_addr = req_addr + (read_cnt << UInt(log2Up(dataBytes)))
val byteshift = full_addr(log2Up(nastiDataBytes) - 1, 0)
val bitshift = Cat(byteshift, UInt(0, 3))
val read_data = (io.nasti.r.bits.data >> bitshift) & Fill(dataWidth, UInt(1, 1))
assert(!io.nasti.r.valid || read_data === expected_data,
s"NastiDriver got wrong data")
}
class AtosConverterTestBackend(implicit p: Parameters) extends NastiModule()(p) {
val io = new Bundle {
val nasti = (new NastiIO).flip
val finished = Bool(OUTPUT)
}
val (s_waddr :: s_wdata :: s_wresp ::
s_raddr :: s_rresp :: s_done :: Nil) = Enum(Bits(), 6)
val state = Reg(init = s_waddr)
val n_words = 4
val test_data = Reg(Vec(n_words, UInt(width = nastiXDataBits)))
val req_id = Reg(UInt(width = nastiXIdBits))
val (w_count, w_last) = Counter(io.nasti.w.fire(), n_words)
val (r_count, r_last) = Counter(io.nasti.r.fire(), n_words)
when (io.nasti.aw.fire()) {
req_id := io.nasti.aw.bits.id
state := s_wdata
}
when (io.nasti.w.fire()) {
test_data(w_count) := io.nasti.w.bits.data
when (io.nasti.w.bits.last) { state := s_wresp }
}
when (io.nasti.b.fire()) { state := s_raddr }
when (io.nasti.ar.fire()) {
req_id := io.nasti.ar.bits.id
state := s_rresp
}
when (io.nasti.r.fire() && io.nasti.r.bits.last) { state := s_done }
io.nasti.aw.ready := (state === s_waddr)
io.nasti.w.ready := (state === s_wdata)
io.nasti.ar.ready := (state === s_raddr)
io.nasti.b.valid := (state === s_wresp)
io.nasti.b.bits := NastiWriteResponseChannel(id = req_id)
io.nasti.r.valid := (state === s_rresp)
io.nasti.r.bits := NastiReadDataChannel(
id = req_id,
data = test_data(r_count),
last = r_last)
io.finished := (state === s_done)
}
class AtosConverterTest(implicit val p: Parameters) extends UnitTest
with HasNastiParameters {
val frontend = Module(new NastiDriver(nastiXDataBits, 4, 1))
val backend = Module(new AtosConverterTestBackend)
val serdes = Module(new AtosSerdes(8))
val desser = Module(new AtosDesser(8))
val client_conv = Module(new AtosClientConverter)
val manager_conv = Module(new AtosManagerConverter)
client_conv.io.nasti <> frontend.io.nasti
serdes.io.wide <> client_conv.io.atos
desser.io.narrow <> serdes.io.narrow
manager_conv.io.atos <> desser.io.wide
backend.io.nasti <> manager_conv.io.nasti
frontend.io.start := io.start
io.finished := frontend.io.finished && backend.io.finished
}
class HastiTest(implicit p: Parameters) extends UnitTest {
val sram = Module(new HastiTestSRAM(8))
val bus = Module(new HastiBus(Seq(a => Bool(true))))
val conv = Module(new HastiMasterIONastiIOConverter)
val driver = Module(new NastiDriver(32, 8, 2))
bus.io.slaves(0) <> sram.io
bus.io.master <> conv.io.hasti
conv.io.nasti <> driver.io.nasti
io.finished := driver.io.finished
driver.io.start := io.start
}

View File

@ -0,0 +1,85 @@
package junctions.unittests
import Chisel._
import junctions._
import junctions.NastiConstants._
class MultiWidthFifoTest extends UnitTest {
val big2little = Module(new MultiWidthFifo(16, 8, 8))
val little2big = Module(new MultiWidthFifo(8, 16, 4))
val bl_send = Reg(init = Bool(false))
val lb_send = Reg(init = Bool(false))
val bl_recv = Reg(init = Bool(false))
val lb_recv = Reg(init = Bool(false))
val bl_finished = Reg(init = Bool(false))
val lb_finished = Reg(init = Bool(false))
val bl_data = Vec.tabulate(4){i => UInt((2 * i + 1) * 256 + 2 * i, 16)}
val lb_data = Vec.tabulate(8){i => UInt(i, 8)}
val (bl_send_cnt, bl_send_done) = Counter(big2little.io.in.fire(), 4)
val (lb_send_cnt, lb_send_done) = Counter(little2big.io.in.fire(), 8)
val (bl_recv_cnt, bl_recv_done) = Counter(big2little.io.out.fire(), 8)
val (lb_recv_cnt, lb_recv_done) = Counter(little2big.io.out.fire(), 4)
big2little.io.in.valid := bl_send
big2little.io.in.bits := bl_data(bl_send_cnt)
big2little.io.out.ready := bl_recv
little2big.io.in.valid := lb_send
little2big.io.in.bits := lb_data(lb_send_cnt)
little2big.io.out.ready := lb_recv
val bl_recv_data_idx = bl_recv_cnt >> UInt(1)
val bl_recv_data = Mux(bl_recv_cnt(0),
bl_data(bl_recv_data_idx)(15, 8),
bl_data(bl_recv_data_idx)(7, 0))
val lb_recv_data = Cat(
lb_data(Cat(lb_recv_cnt, UInt(1, 1))),
lb_data(Cat(lb_recv_cnt, UInt(0, 1))))
when (io.start) {
bl_send := Bool(true)
lb_send := Bool(true)
}
when (bl_send_done) {
bl_send := Bool(false)
bl_recv := Bool(true)
}
when (lb_send_done) {
lb_send := Bool(false)
lb_recv := Bool(true)
}
when (bl_recv_done) {
bl_recv := Bool(false)
bl_finished := Bool(true)
}
when (lb_recv_done) {
lb_recv := Bool(false)
lb_finished := Bool(true)
}
io.finished := bl_finished && lb_finished
val bl_start_recv = Reg(next = bl_send_done)
val lb_start_recv = Reg(next = lb_send_done)
assert(!little2big.io.out.valid || little2big.io.out.bits === lb_recv_data,
"Little to Big data mismatch")
assert(!big2little.io.out.valid || big2little.io.out.bits === bl_recv_data,
"Bit to Little data mismatch")
assert(!lb_start_recv || little2big.io.count === UInt(4),
"Little to Big count incorrect")
assert(!bl_start_recv || big2little.io.count === UInt(8),
"Big to Little count incorrect")
}

View File

@ -0,0 +1,111 @@
package junctions.unittests
import Chisel._
import junctions._
import junctions.NastiConstants._
import cde.Parameters
class NastiDemuxDriver(n: Int)(implicit p: Parameters) extends Module {
val io = new Bundle {
val start = Bool(INPUT)
val finished = Bool(OUTPUT)
val nasti = new NastiIO
val select = UInt(OUTPUT, log2Up(n))
}
val (s_idle :: s_write_addr :: s_write_data :: s_write_resp ::
s_read_addr :: s_read_resp :: s_done :: Nil) = Enum(Bits(), 7)
val state = Reg(init = s_idle)
val select = Reg(init = UInt(0, log2Up(n)))
when (state === s_idle && io.start) { state := s_write_addr }
when (io.nasti.aw.fire()) { state := s_write_data }
when (io.nasti.w.fire()) { state := s_write_resp }
when (io.nasti.b.fire()) { state := s_read_addr }
when (io.nasti.ar.fire()) { state := s_read_resp }
when (io.nasti.r.fire()) {
when (select === UInt(n - 1)) {
state := s_done
} .otherwise {
select := select + UInt(1)
state := s_write_addr
}
}
io.nasti.aw.valid := (state === s_write_addr)
io.nasti.aw.bits := NastiWriteAddressChannel(
id = UInt(0),
addr = UInt(0),
size = UInt("b011"))
io.nasti.w.valid := (state === s_write_data)
io.nasti.w.bits := NastiWriteDataChannel(data = select)
io.nasti.b.ready := (state === s_write_resp)
io.nasti.ar.valid := (state === s_read_addr)
io.nasti.ar.bits := NastiReadAddressChannel(
id = UInt(0),
addr = UInt(0),
size = UInt("b011"))
io.nasti.r.ready := (state === s_read_resp)
io.finished := (state === s_done)
io.select := select
assert(!io.nasti.r.valid || io.nasti.r.bits.data === select,
"NASTI DeMux test: Read data did not match")
}
class NastiDemuxSlave(implicit p: Parameters) extends NastiModule()(p) {
val io = (new NastiIO).flip
val (s_write_wait :: s_write_data :: s_write_resp ::
s_read_wait :: s_read_resp :: s_done :: Nil) = Enum(Bits(), 6)
val state = Reg(init = s_write_wait)
val value = Reg(UInt(width = 64))
val id = Reg(UInt(width = nastiXIdBits))
when (io.aw.fire()) {
id := io.aw.bits.id
state := s_write_data
}
when (io.w.fire()) {
value := io.w.bits.data
state := s_write_resp
}
when (io.b.fire()) { state := s_read_wait }
when (io.ar.fire()) {
id := io.ar.bits.id
state := s_read_resp
}
when (io.r.fire()) { state := s_done }
io.aw.ready := (state === s_write_wait)
io.w.ready := (state === s_write_data)
io.b.valid := (state === s_write_resp)
io.b.bits := NastiWriteResponseChannel(id = id)
io.ar.ready := (state === s_read_wait)
io.r.valid := (state === s_read_resp)
io.r.bits := NastiReadDataChannel(id = id, data = value)
}
class NastiMemoryDemuxTest(implicit p: Parameters) extends UnitTest {
val nSlaves = 4
val driver = Module(new NastiDemuxDriver(nSlaves))
driver.io.start := io.start
io.finished := driver.io.finished
val demux = Module(new NastiMemoryDemux(nSlaves))
demux.io.master <> driver.io.nasti
demux.io.select := driver.io.select
for (i <- 0 until nSlaves) {
val slave = Module(new NastiDemuxSlave)
slave.io <> demux.io.slaves(i)
}
}

View File

@ -0,0 +1,65 @@
package junctions.unittests
import Chisel._
import junctions._
import cde.{Field, Parameters}
abstract class UnitTest extends Module {
val io = new Bundle {
val finished = Bool(OUTPUT)
val start = Bool(INPUT)
}
when (io.start) {
printf(s"Started UnitTest ${this.getClass.getSimpleName}\n")
}
}
case object UnitTests extends Field[Parameters => Seq[UnitTest]]
class UnitTestSuite(implicit p: Parameters) extends Module {
val io = new Bundle {
val finished = Bool(OUTPUT)
}
val tests = p(UnitTests)(p)
val s_idle :: s_start :: s_wait :: s_done :: Nil = Enum(Bits(), 4)
val state = Reg(init = s_idle)
val test_idx = Reg(init = UInt(0, log2Up(tests.size)))
val test_finished = Vec(tests.map(_.io.finished))
when (state === s_idle) { state := s_start }
when (state === s_start) { state := s_wait }
when (state === s_wait && test_finished(test_idx)) {
state := s_start
test_idx := test_idx + UInt(1)
state := Mux(test_idx === UInt(tests.size - 1), s_done, s_start)
}
val timer = Module(new Timer(1000, tests.size))
timer.io.start.valid := Bool(false)
timer.io.stop.valid := Bool(false)
tests.zipWithIndex.foreach { case (mod, i) =>
mod.io.start := (state === s_start) && test_idx === UInt(i)
when (test_idx === UInt(i)) {
timer.io.start.valid := mod.io.start
timer.io.start.bits := UInt(i)
timer.io.stop.valid := mod.io.finished
timer.io.stop.bits := UInt(i)
}
}
io.finished := (state === s_done)
assert(!timer.io.timeout.valid, "UnitTest timed out")
}
object JunctionsUnitTests {
def apply(implicit p: Parameters): Seq[UnitTest] =
Seq(
Module(new MultiWidthFifoTest),
Module(new AtosConverterTest),
Module(new NastiMemoryDemuxTest),
Module(new HastiTest))
}

View File

@ -0,0 +1,365 @@
/// See LICENSE for license details.
package junctions
import Chisel._
import cde.Parameters
class ParameterizedBundle(implicit p: Parameters) extends Bundle {
override def cloneType = {
try {
this.getClass.getConstructors.head.newInstance(p).asInstanceOf[this.type]
} catch {
case e: java.lang.IllegalArgumentException =>
throwException("Unable to use ParamaterizedBundle.cloneType on " +
this.getClass + ", probably because " + this.getClass +
"() takes more than one argument. Consider overriding " +
"cloneType() on " + this.getClass, e)
}
}
}
class HellaFlowQueue[T <: Data](val entries: Int)(data: => T) extends Module {
val io = new QueueIO(data, entries)
require(entries > 1)
val do_flow = Wire(Bool())
val do_enq = io.enq.fire() && !do_flow
val do_deq = io.deq.fire() && !do_flow
val maybe_full = Reg(init=Bool(false))
val enq_ptr = Counter(do_enq, entries)._1
val (deq_ptr, deq_done) = Counter(do_deq, entries)
when (do_enq =/= do_deq) { maybe_full := do_enq }
val ptr_match = enq_ptr === deq_ptr
val empty = ptr_match && !maybe_full
val full = ptr_match && maybe_full
val atLeastTwo = full || enq_ptr - deq_ptr >= UInt(2)
do_flow := empty && io.deq.ready
val ram = SeqMem(entries, data)
when (do_enq) { ram.write(enq_ptr, io.enq.bits) }
val ren = io.deq.ready && (atLeastTwo || !io.deq.valid && !empty)
val raddr = Mux(io.deq.valid, Mux(deq_done, UInt(0), deq_ptr + UInt(1)), deq_ptr)
val ram_out_valid = Reg(next = ren)
io.deq.valid := Mux(empty, io.enq.valid, ram_out_valid)
io.enq.ready := !full
io.deq.bits := Mux(empty, io.enq.bits, ram.read(raddr, ren))
}
class HellaQueue[T <: Data](val entries: Int)(data: => T) extends Module {
val io = new QueueIO(data, entries)
val fq = Module(new HellaFlowQueue(entries)(data))
fq.io.enq <> io.enq
io.deq <> Queue(fq.io.deq, 1, pipe = true)
}
object HellaQueue {
def apply[T <: Data](enq: DecoupledIO[T], entries: Int) = {
val q = Module((new HellaQueue(entries)) { enq.bits })
q.io.enq.valid := enq.valid // not using <> so that override is allowed
q.io.enq.bits := enq.bits
enq.ready := q.io.enq.ready
q.io.deq
}
}
/** A generalized locking RR arbiter that addresses the limitations of the
* version in the Chisel standard library */
abstract class JunctionsAbstractLockingArbiter[T <: Data](typ: T, arbN: Int)
extends Module {
val io = new Bundle {
val in = Vec(arbN, Decoupled(typ.cloneType)).flip
val out = Decoupled(typ.cloneType)
}
def rotateLeft[T <: Data](norm: Vec[T], rot: UInt): Vec[T] = {
val n = norm.size
Vec.tabulate(n) { i =>
Mux(rot < UInt(n - i), norm(UInt(i) + rot), norm(rot - UInt(n - i)))
}
}
val lockIdx = Reg(init = UInt(0, log2Up(arbN)))
val locked = Reg(init = Bool(false))
val choice = PriorityMux(
rotateLeft(Vec(io.in.map(_.valid)), lockIdx + UInt(1)),
rotateLeft(Vec((0 until arbN).map(UInt(_))), lockIdx + UInt(1)))
val chosen = Mux(locked, lockIdx, choice)
for (i <- 0 until arbN) {
io.in(i).ready := io.out.ready && chosen === UInt(i)
}
io.out.valid := io.in(chosen).valid
io.out.bits := io.in(chosen).bits
}
/** This locking arbiter determines when it is safe to unlock
* by peeking at the data */
class JunctionsPeekingArbiter[T <: Data](
typ: T, arbN: Int,
canUnlock: T => Bool,
needsLock: Option[T => Bool] = None)
extends JunctionsAbstractLockingArbiter(typ, arbN) {
def realNeedsLock(data: T): Bool =
needsLock.map(_(data)).getOrElse(Bool(true))
when (io.out.fire()) {
when (!locked && realNeedsLock(io.out.bits)) {
lockIdx := choice
locked := Bool(true)
}
// the unlock statement takes precedent
when (canUnlock(io.out.bits)) {
locked := Bool(false)
}
}
}
/** This arbiter determines when it is safe to unlock by counting transactions */
class JunctionsCountingArbiter[T <: Data](
typ: T, arbN: Int, count: Int,
val needsLock: Option[T => Bool] = None)
extends JunctionsAbstractLockingArbiter(typ, arbN) {
def realNeedsLock(data: T): Bool =
needsLock.map(_(data)).getOrElse(Bool(true))
// if count is 1, you should use a non-locking arbiter
require(count > 1, "CountingArbiter cannot have count <= 1")
val lock_ctr = Counter(count)
when (io.out.fire()) {
when (!locked && realNeedsLock(io.out.bits)) {
lockIdx := choice
locked := Bool(true)
lock_ctr.inc()
}
when (locked) {
when (lock_ctr.inc()) { locked := Bool(false) }
}
}
}
class ReorderQueueWrite[T <: Data](dType: T, tagWidth: Int) extends Bundle {
val data = dType.cloneType
val tag = UInt(width = tagWidth)
override def cloneType =
new ReorderQueueWrite(dType, tagWidth).asInstanceOf[this.type]
}
class ReorderEnqueueIO[T <: Data](dType: T, tagWidth: Int)
extends DecoupledIO(new ReorderQueueWrite(dType, tagWidth)) {
override def cloneType =
new ReorderEnqueueIO(dType, tagWidth).asInstanceOf[this.type]
}
class ReorderDequeueIO[T <: Data](dType: T, tagWidth: Int) extends Bundle {
val valid = Bool(INPUT)
val tag = UInt(INPUT, tagWidth)
val data = dType.cloneType.asOutput
val matches = Bool(OUTPUT)
override def cloneType =
new ReorderDequeueIO(dType, tagWidth).asInstanceOf[this.type]
}
class ReorderQueue[T <: Data](dType: T, tagWidth: Int, size: Option[Int] = None)
extends Module {
val io = new Bundle {
val enq = new ReorderEnqueueIO(dType, tagWidth).flip
val deq = new ReorderDequeueIO(dType, tagWidth)
}
val tagSpaceSize = 1 << tagWidth
val actualSize = size.getOrElse(tagSpaceSize)
if (tagSpaceSize > actualSize) {
val roq_data = Reg(Vec(actualSize, dType))
val roq_tags = Reg(Vec(actualSize, UInt(width = tagWidth)))
val roq_free = Reg(init = Vec.fill(actualSize)(Bool(true)))
val roq_enq_addr = PriorityEncoder(roq_free)
val roq_matches = roq_tags.zip(roq_free)
.map { case (tag, free) => tag === io.deq.tag && !free }
val roq_deq_onehot = PriorityEncoderOH(roq_matches)
io.enq.ready := roq_free.reduce(_ || _)
io.deq.data := Mux1H(roq_deq_onehot, roq_data)
io.deq.matches := roq_matches.reduce(_ || _)
when (io.enq.valid && io.enq.ready) {
roq_data(roq_enq_addr) := io.enq.bits.data
roq_tags(roq_enq_addr) := io.enq.bits.tag
roq_free(roq_enq_addr) := Bool(false)
}
when (io.deq.valid) {
roq_free(OHToUInt(roq_deq_onehot)) := Bool(true)
}
println(s"Warning - using a CAM for ReorderQueue, tagBits: ${tagWidth} size: ${actualSize}")
} else {
val roq_data = Mem(tagSpaceSize, dType)
val roq_free = Reg(init = Vec.fill(tagSpaceSize)(Bool(true)))
io.enq.ready := roq_free(io.enq.bits.tag)
io.deq.data := roq_data(io.deq.tag)
io.deq.matches := !roq_free(io.deq.tag)
when (io.enq.valid && io.enq.ready) {
roq_data(io.enq.bits.tag) := io.enq.bits.data
roq_free(io.enq.bits.tag) := Bool(false)
}
when (io.deq.valid) {
roq_free(io.deq.tag) := Bool(true)
}
}
}
object DecoupledHelper {
def apply(rvs: Bool*) = new DecoupledHelper(rvs)
}
class DecoupledHelper(val rvs: Seq[Bool]) {
def fire(exclude: Bool, includes: Bool*) = {
(rvs.filter(_ ne exclude) ++ includes).reduce(_ && _)
}
}
class MultiWidthFifo(inW: Int, outW: Int, n: Int) extends Module {
val io = new Bundle {
val in = Decoupled(Bits(width = inW)).flip
val out = Decoupled(Bits(width = outW))
val count = UInt(OUTPUT, log2Up(n + 1))
}
if (inW == outW) {
val q = Module(new Queue(Bits(width = inW), n))
q.io.enq <> io.in
io.out <> q.io.deq
io.count := q.io.count
} else if (inW > outW) {
val nBeats = inW / outW
require(inW % outW == 0, s"MultiWidthFifo: in: $inW not divisible by out: $outW")
require(n % nBeats == 0, s"Cannot store $n output words when output beats is $nBeats")
val wdata = Reg(Vec(n / nBeats, Bits(width = inW)))
val rdata = Vec(wdata.flatMap { indat =>
(0 until nBeats).map(i => indat(outW * (i + 1) - 1, outW * i)) })
val head = Reg(init = UInt(0, log2Up(n / nBeats)))
val tail = Reg(init = UInt(0, log2Up(n)))
val size = Reg(init = UInt(0, log2Up(n + 1)))
when (io.in.fire()) {
wdata(head) := io.in.bits
head := head + UInt(1)
}
when (io.out.fire()) { tail := tail + UInt(1) }
size := MuxCase(size, Seq(
(io.in.fire() && io.out.fire()) -> (size + UInt(nBeats - 1)),
io.in.fire() -> (size + UInt(nBeats)),
io.out.fire() -> (size - UInt(1))))
io.out.valid := size > UInt(0)
io.out.bits := rdata(tail)
io.in.ready := size < UInt(n)
io.count := size
} else {
val nBeats = outW / inW
require(outW % inW == 0, s"MultiWidthFifo: out: $outW not divisible by in: $inW")
val wdata = Reg(Vec(n * nBeats, Bits(width = inW)))
val rdata = Vec.tabulate(n) { i =>
Cat(wdata.slice(i * nBeats, (i + 1) * nBeats).reverse)}
val head = Reg(init = UInt(0, log2Up(n * nBeats)))
val tail = Reg(init = UInt(0, log2Up(n)))
val size = Reg(init = UInt(0, log2Up(n * nBeats + 1)))
when (io.in.fire()) {
wdata(head) := io.in.bits
head := head + UInt(1)
}
when (io.out.fire()) { tail := tail + UInt(1) }
size := MuxCase(size, Seq(
(io.in.fire() && io.out.fire()) -> (size - UInt(nBeats - 1)),
io.in.fire() -> (size + UInt(1)),
io.out.fire() -> (size - UInt(nBeats))))
io.count := size >> UInt(log2Up(nBeats))
io.out.valid := io.count > UInt(0)
io.out.bits := rdata(tail)
io.in.ready := size < UInt(n * nBeats)
}
}
// ============
// Static timer
// ============
// Timer with a statically-specified period.
// Can take multiple inflight start-stop events with ID
// Will continue to count down as long as at least one event is inflight
class Timer(initCount: Int, maxInflight: Int) extends Module {
val io = new Bundle {
val start = Valid(UInt(width = log2Up(maxInflight))).flip
val stop = Valid(UInt(width = log2Up(maxInflight))).flip
val timeout = Valid(UInt(width = log2Up(maxInflight)))
}
val inflight = Reg(init = Vec.fill(maxInflight) { Bool(false) })
val countdown = Reg(UInt(width = log2Up(initCount)))
val active = inflight.reduce(_ || _)
when (active) {
countdown := countdown - UInt(1)
}
when (io.start.valid) {
inflight(io.start.bits) := Bool(true)
countdown := UInt(initCount - 1)
}
when (io.stop.valid) {
inflight(io.stop.bits) := Bool(false)
}
io.timeout.valid := countdown === UInt(0) && active
io.timeout.bits := PriorityEncoder(inflight)
assert(!io.stop.valid || inflight(io.stop.bits),
"Timer stop for transaction that's not inflight")
}
object Timer {
def apply(initCount: Int, start: Bool, stop: Bool): Bool = {
val timer = Module(new Timer(initCount, 1))
timer.io.start.valid := start
timer.io.start.bits := UInt(0)
timer.io.stop.valid := stop
timer.io.stop.bits := UInt(0)
timer.io.timeout.valid
}
}