1
0
rocket-chip/src/main/scala/tilelink/RationalCrossing.scala

228 lines
7.7 KiB
Scala
Raw Normal View History

// See LICENSE.SiFive for license details.
// If you know two clocks are related with a N:1 or 1:N relationship, you
// can cross the clock domains with lower latency than an AsyncQueue.
// This clock crossing behaves almost identically to a TLBuffer(2):
// - It adds one cycle latency to each clock domain.
// - All outputs of TLRational are registers (bits, valid, and ready).
// - It costs 3*bits registers as opposed to 2*bits in a TLBuffer(2)
package freechips.rocketchip.tilelink
import Chisel._
import chisel3.internal.sourceinfo.SourceInfo
import freechips.rocketchip.config.Parameters
import freechips.rocketchip.diplomacy._
import freechips.rocketchip.util._
class TLRationalCrossingSource(implicit p: Parameters) extends LazyModule
{
val node = TLRationalSourceNode()
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val in = node.bundleIn
val out = node.bundleOut
}
((io.in zip io.out) zip (node.edgesIn zip node.edgesOut)) foreach { case ((in, out), (edgeIn, edgeOut)) =>
val bce = edgeIn.manager.anySupportAcquireB && edgeIn.client.anySupportProbe
val direction = edgeOut.manager.direction
out.a <> ToRational(in.a, direction)
in.d <> FromRational(out.d, direction.flip)
if (bce) {
in.b <> FromRational(out.b, direction.flip)
out.c <> ToRational(in.c, direction)
out.e <> ToRational(in.e, direction)
} else {
in.b.valid := Bool(false)
in.c.ready := Bool(true)
in.e.ready := Bool(true)
out.b.ready := Bool(true)
out.c.valid := Bool(false)
out.e.valid := Bool(false)
out.b.sink := UInt(0)
out.c.source := UInt(0)
out.e.source := UInt(0)
}
}
}
}
class TLRationalCrossingSink(direction: RationalDirection = Symmetric)(implicit p: Parameters) extends LazyModule
{
val node = TLRationalSinkNode(direction)
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val in = node.bundleIn
val out = node.bundleOut
}
((io.in zip io.out) zip (node.edgesIn zip node.edgesOut)) foreach { case ((in, out), (edgeIn, edgeOut)) =>
val bce = edgeOut.manager.anySupportAcquireB && edgeOut.client.anySupportProbe
val direction = edgeIn.manager.direction
out.a <> FromRational(in.a, direction)
in.d <> ToRational(out.d, direction.flip)
if (bce) {
in.b <> ToRational(out.b, direction.flip)
out.c <> FromRational(in.c, direction)
out.e <> FromRational(in.e, direction)
} else {
out.b.ready := Bool(true)
out.c.valid := Bool(false)
out.e.valid := Bool(false)
in.b.valid := Bool(false)
in.c.ready := Bool(true)
in.e.ready := Bool(true)
in.b.source := UInt(0)
in.c.sink := UInt(0)
in.e.sink := UInt(0)
}
}
}
}
object TLRationalCrossingSource
{
// applied to the TL source node; y.node := TLRationalCrossingSource()(x.node)
def apply()(x: TLOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): TLRationalOutwardNode = {
val source = LazyModule(new TLRationalCrossingSource)
source.node := x
source.node
}
}
object TLRationalCrossingSink
{
// applied to the TL source node; y.node := TLRationalCrossingSink()(x.node)
def apply(direction: RationalDirection = Symmetric)(x: TLRationalOutwardNode)(implicit p: Parameters, sourceInfo: SourceInfo): TLOutwardNode = {
val sink = LazyModule(new TLRationalCrossingSink(direction))
sink.node := x
sink.node
}
}
class TLRationalCrossing(direction: RationalDirection = Symmetric)(implicit p: Parameters) extends LazyModule
{
val nodeIn = TLInputNode()
val nodeOut = TLOutputNode()
val node = NodeHandle(nodeIn, nodeOut)
val source = LazyModule(new TLRationalCrossingSource)
val sink = LazyModule(new TLRationalCrossingSink(direction))
val _ = (sink.node := source.node) // no monitor
val in = (source.node := nodeIn)
val out = (nodeOut := sink.node)
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val in = nodeIn.bundleIn
val in_clock = Clock(INPUT)
val in_reset = Bool(INPUT)
val out = nodeOut.bundleOut
val out_clock = Clock(INPUT)
val out_reset = Bool(INPUT)
}
source.module.clock := io.in_clock
source.module.reset := io.in_reset
in.foreach { lm =>
lm.module.clock := io.in_clock
lm.module.reset := io.in_reset
}
sink.module.clock := io.out_clock
sink.module.reset := io.out_reset
out.foreach { lm =>
lm.module.clock := io.out_clock
lm.module.reset := io.out_reset
}
}
}
/** Synthesizeable unit tests */
import freechips.rocketchip.unittest._
class TLRAMRationalCrossingSource(name: String, txns: Int)(implicit p: Parameters) extends LazyModule {
val node = TLRationalOutputNode()
val fuzz = LazyModule(new TLFuzzer(txns))
val model = LazyModule(new TLRAMModel(name))
model.node := fuzz.node
node := TLRationalCrossingSource()(TLDelayer(0.25)(model.node))
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val finished = Bool(OUTPUT)
val out = node.bundleOut
}
io.finished := fuzz.module.io.finished
}
}
class TLRAMRationalCrossingSink(direction: RationalDirection)(implicit p: Parameters) extends LazyModule {
val node = TLRationalInputNode()
val ram = LazyModule(new TLRAM(AddressSet(0x0, 0x3ff)))
ram.node := TLFragmenter(4, 256)(TLDelayer(0.25)(TLRationalCrossingSink(direction)(node)))
lazy val module = new LazyModuleImp(this) {
val io = new Bundle {
val in = node.bundleIn
}
}
}
class TLRAMRationalCrossing(txns: Int)(implicit p: Parameters) extends LazyModule {
val sym_fast_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing sym_fast", txns))
val sym_slow_sink = LazyModule(new TLRAMRationalCrossingSink(Symmetric))
sym_slow_sink.node := sym_fast_source.node
val sym_slow_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing sym_slow", txns))
val sym_fast_sink = LazyModule(new TLRAMRationalCrossingSink(Symmetric))
sym_fast_sink.node := sym_slow_source.node
val fix_fast_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing fast", txns))
val fix_slow_sink = LazyModule(new TLRAMRationalCrossingSink(FastToSlow))
fix_slow_sink.node := fix_fast_source.node
val fix_slow_source = LazyModule(new TLRAMRationalCrossingSource("RationalCrossing slow", txns))
val fix_fast_sink = LazyModule(new TLRAMRationalCrossingSink(SlowToFast))
fix_fast_sink.node := fix_slow_source.node
lazy val module = new LazyModuleImp(this) with HasUnitTestIO {
io.finished :=
sym_fast_source.module.io.finished &&
sym_slow_source.module.io.finished &&
fix_fast_source.module.io.finished &&
fix_slow_source.module.io.finished
// Generate faster clock (still divided so verilator approves)
val fast = Module(new Pow2ClockDivider(1))
sym_fast_source.module.clock := fast.io.clock_out
sym_fast_sink .module.clock := fast.io.clock_out
fix_fast_source.module.clock := fast.io.clock_out
fix_fast_sink .module.clock := fast.io.clock_out
// Generate slower clock
val slow = Module(new Pow2ClockDivider(2))
fix_slow_source.module.clock := slow.io.clock_out
fix_slow_sink .module.clock := slow.io.clock_out
val odd = Module(new ClockDivider3)
odd.io.clk_in := clock
sym_slow_source.module.clock := odd.io.clk_out
sym_slow_sink .module.clock := odd.io.clk_out
}
}
class TLRAMRationalCrossingTest(txns: Int = 5000, timeout: Int = 500000)(implicit p: Parameters) extends UnitTest(timeout) {
io.finished := Module(LazyModule(new TLRAMRationalCrossing(txns)).module).io.finished
}