freedom/bootrom/sdboot/sd.c

281 lines
5.1 KiB
C

// See LICENSE for license details.
#include <stdint.h>
#include <platform.h>
#include "common.h"
#define DEBUG
#include "kprintf.h"
#define MAX_CORES 8
#define PAYLOAD_SIZE (16 << 11)
#define F_CLK 60000000UL
static volatile uint32_t * const spi = (void *)(SPI_CTRL_ADDR);
static inline uint8_t spi_xfer(uint8_t d)
{
int32_t r;
REG32(spi, SPI_REG_TXFIFO) = d;
do {
r = REG32(spi, SPI_REG_RXFIFO);
} while (r < 0);
return r;
}
static inline uint8_t sd_dummy(void)
{
return spi_xfer(0xFF);
}
static uint8_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc)
{
unsigned long n;
uint8_t r;
REG32(spi, SPI_REG_CSMODE) = SPI_CSMODE_HOLD;
sd_dummy();
spi_xfer(cmd);
spi_xfer(arg >> 24);
spi_xfer(arg >> 16);
spi_xfer(arg >> 8);
spi_xfer(arg);
spi_xfer(crc);
n = 1000;
do {
r = sd_dummy();
if (!(r & 0x80)) {
// dprintf("sd:cmd: %hx\r\n", r);
goto done;
}
} while (--n > 0);
kputs("sd_cmd: timeout");
done:
return r;
}
static inline void sd_cmd_end(void)
{
sd_dummy();
REG32(spi, SPI_REG_CSMODE) = SPI_CSMODE_AUTO;
}
static void sd_poweron(void)
{
long i;
REG32(spi, SPI_REG_SCKDIV) = (F_CLK / 300000UL);
REG32(spi, SPI_REG_CSMODE) = SPI_CSMODE_OFF;
for (i = 10; i > 0; i--) {
sd_dummy();
}
REG32(spi, SPI_REG_CSMODE) = SPI_CSMODE_AUTO;
}
static int sd_cmd0(void)
{
int rc;
dputs("CMD0");
rc = (sd_cmd(0x40, 0, 0x95) != 0x01);
sd_cmd_end();
return rc;
}
static int sd_cmd8(void)
{
int rc;
dputs("CMD8");
rc = (sd_cmd(0x48, 0x000001AA, 0x87) != 0x01);
sd_dummy(); /* command version; reserved */
sd_dummy(); /* reserved */
rc |= ((sd_dummy() & 0xF) != 0x1); /* voltage */
rc |= (sd_dummy() != 0xAA); /* check pattern */
sd_cmd_end();
return rc;
}
static void sd_cmd55(void)
{
sd_cmd(0x77, 0, 0x65);
sd_cmd_end();
}
static int sd_acmd41(void)
{
uint8_t r;
dputs("ACMD41");
do {
sd_cmd55();
r = sd_cmd(0x69, 0x40000000, 0x77); /* HCS = 1 */
} while (r == 0x01);
return (r != 0x00);
}
static int sd_cmd58(void)
{
int rc;
dputs("CMD58");
rc = (sd_cmd(0x7A, 0, 0xFD) != 0x00);
rc |= ((sd_dummy() & 0x80) != 0x80); /* Power up status */
sd_dummy();
sd_dummy();
sd_dummy();
sd_cmd_end();
return rc;
}
static int sd_cmd16(void)
{
int rc;
dputs("CMD16");
rc = (sd_cmd(0x50, 0x200, 0x15) != 0x00);
sd_cmd_end();
return rc;
}
static uint16_t crc16_round(uint16_t crc, uint8_t data) {
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data;
crc ^= (uint8_t)(crc >> 4) & 0xf;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
return crc;
}
#define SPIN_SHIFT 6
#define SPIN_UPDATE(i) (!((i) & ((1 << SPIN_SHIFT)-1)))
#define SPIN_INDEX(i) (((i) >> SPIN_SHIFT) & 0x3)
static const char spinner[] = { '-', '/', '|', '\\' };
static int copy(void)
{
volatile uint8_t *p = (void *)(PAYLOAD_DEST);
long i = PAYLOAD_SIZE;
int rc = 0;
dputs("CMD18");
//~ kprintf("LOADING ");
kprintf("READ: ");
REG32(spi, SPI_REG_SCKDIV) = (F_CLK / 20000000UL);
if (sd_cmd(0x52, 0, 0xE1) != 0x00) {
sd_cmd_end();
return 1;
}
do {
uint16_t crc, crc_exp;
long n;
crc = 0;
//~ n = 512;
n = 50;
while (sd_dummy() != 0xFE);
do {
uint8_t x = sd_dummy();
kputc(x);
//~ *p++ = x;
//~ crc = crc16_round(crc, x);
} while (--n > 0);
return 0;
crc_exp = ((uint16_t)sd_dummy() << 8);
crc_exp |= sd_dummy();
if (crc != crc_exp) {
kputs("\b- CRC mismatch ");
rc = 1;
break;
}
if (SPIN_UPDATE(i)) {
kputc('\b');
kputc(spinner[SPIN_INDEX(i)]);
}
} while (--i > 0);
sd_cmd_end();
sd_cmd(0x4C, 0, 0x01);
sd_cmd_end();
kputs("\b ");
return rc;
}
// leave room for 2 MiB stack (SP = 8FFFF000)
#define RAMTEST_START (uint32_t*)(0x80000000)
#define RAMTEST_END (uint32_t*)(0x8FDFF000)
int main(void)
{
//REG32(uart, UART_REG_TXCTRL) = UART_TXEN;
//GPIO_REG(GPIO_INPUT_EN) = 0xFF;
GPIO_REG(GPIO_OUTPUT_EN) = 0xFF;
GPIO_REG(GPIO_OUTPUT_VAL) = 0xFF;
kprintf("\nFilling RAM from %lx to %lx...\n", RAMTEST_START, RAMTEST_END);
uint32_t counter = 0;
for(uint32_t* ram = RAMTEST_START; ram < RAMTEST_END; ++ram) {
*ram = counter++;
}
kprintf("\rChecking RAM...\n");
counter = 0;
uint32_t correct = 0;
uint32_t wrong = 0;
for(uint32_t* ram = RAMTEST_START; ram < RAMTEST_END; ++ram) {
if(*ram != counter) {
kprintf("\rMismatch at %lx: read %x, expected %x\n", ram, *ram, counter);
++wrong;
} else {
++correct;
}
++counter;
}
kprintf("\rSummary: %x matches, %x mismatches.\n", correct, wrong);
kprintf("\nTrying to read from SD card...\n");
kputs("POWERON");
sd_poweron();
kprintf("sd_cmd0: %hx\n", sd_cmd0());
kprintf("sd_cmd8: %hx\n", sd_cmd8());
kprintf("sd_acmd41: %hx\n", sd_acmd41());
kprintf("sd_cmd58: %hx\n", sd_cmd58());
kprintf("sd_cmd16: %hx\n", sd_cmd16());
kprintf("\ncopy: %hx\n", copy());
while(1) {
//uint8_t dip_value = GPIO_REG(GPIO_INPUT_VAL) & 0b01111111;
//kprintf("dip value: %hx, ram value: %c\n", dip_value, ram[dip_value]);
GPIO_REG(GPIO_OUTPUT_VAL) ^= 0xFF;
}
return 0;
/*
kputs("INIT");
sd_poweron();
if (sd_cmd0() ||
sd_cmd8() ||
sd_acmd41() ||
sd_cmd58() ||
sd_cmd16() ||
copy()) {
kputs("ERROR");
return 1;
}
kputs("BOOT");
__asm__ __volatile__ ("fence.i" : : : "memory");
return 0;*/
}